Cargando…
A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial
SIMPLE SUMMARY: The interest in using Machine-Learning (ML) techniques in clinical research is growing. We applied ML to build up a novel prognostic model from patients affected with Mantle Cell Lymphoma (MCL) enrolled in a phase III open-labeled, randomized clinical trial from the Fondazione Italia...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750124/ https://www.ncbi.nlm.nih.gov/pubmed/35008361 http://dx.doi.org/10.3390/cancers14010188 |
_version_ | 1784631389460627456 |
---|---|
author | Zaccaria, Gian Maria Ferrero, Simone Hoster, Eva Passera, Roberto Evangelista, Andrea Genuardi, Elisa Drandi, Daniela Ghislieri, Marco Barbero, Daniela Del Giudice, Ilaria Tani, Monica Moia, Riccardo Volpetti, Stefano Cabras, Maria Giuseppina Di Renzo, Nicola Merli, Francesco Vallisa, Daniele Spina, Michele Pascarella, Anna Latte, Giancarlo Patti, Caterina Fabbri, Alberto Guarini, Attilio Vitolo, Umberto Hermine, Olivier Kluin-Nelemans, Hanneke C Cortelazzo, Sergio Dreyling, Martin Ladetto, Marco |
author_facet | Zaccaria, Gian Maria Ferrero, Simone Hoster, Eva Passera, Roberto Evangelista, Andrea Genuardi, Elisa Drandi, Daniela Ghislieri, Marco Barbero, Daniela Del Giudice, Ilaria Tani, Monica Moia, Riccardo Volpetti, Stefano Cabras, Maria Giuseppina Di Renzo, Nicola Merli, Francesco Vallisa, Daniele Spina, Michele Pascarella, Anna Latte, Giancarlo Patti, Caterina Fabbri, Alberto Guarini, Attilio Vitolo, Umberto Hermine, Olivier Kluin-Nelemans, Hanneke C Cortelazzo, Sergio Dreyling, Martin Ladetto, Marco |
author_sort | Zaccaria, Gian Maria |
collection | PubMed |
description | SIMPLE SUMMARY: The interest in using Machine-Learning (ML) techniques in clinical research is growing. We applied ML to build up a novel prognostic model from patients affected with Mantle Cell Lymphoma (MCL) enrolled in a phase III open-labeled, randomized clinical trial from the Fondazione Italiana Linfomi (FIL)—MCL0208. This is the first application of ML in a prospective clinical trial on MCL lymphoma. We applied a novel ML pipeline to a large cohort of patients for which several clinical variables have been collected at baseline, and assessed their prognostic value based on overall survival. We validated it on two independent data series provided by European MCL Network. Due to its flexibility, we believe that ML would be of tremendous help in the development of a novel MCL prognostic score aimed at re-defining risk stratification. ABSTRACT: Background: Multicenter clinical trials are producing growing amounts of clinical data. Machine Learning (ML) might facilitate the discovery of novel tools for prognostication and disease-stratification. Taking advantage of a systematic collection of multiple variables, we developed a model derived from data collected on 300 patients with mantle cell lymphoma (MCL) from the Fondazione Italiana Linfomi-MCL0208 phase III trial (NCT02354313). Methods: We developed a score with a clustering algorithm applied to clinical variables. The candidate score was correlated to overall survival (OS) and validated in two independent data series from the European MCL Network (NCT00209222, NCT00209209); Results: Three groups of patients were significantly discriminated: Low, Intermediate (Int), and High risk (High). Seven discriminants were identified by a feature reduction approach: albumin, Ki-67, lactate dehydrogenase, lymphocytes, platelets, bone marrow infiltration, and B-symptoms. Accordingly, patients in the Int and High groups had shorter OS rates than those in the Low and Int groups, respectively (Int→Low, HR: 3.1, 95% CI: 1.0–9.6; High→Int, HR: 2.3, 95% CI: 1.5–4.7). Based on the 7 markers, we defined the engineered MCL international prognostic index (eMIPI), which was validated and confirmed in two independent cohorts; Conclusions: We developed and validated a ML-based prognostic model for MCL. Even when currently limited to baseline predictors, our approach has high scalability potential. |
format | Online Article Text |
id | pubmed-8750124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87501242022-01-12 A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial Zaccaria, Gian Maria Ferrero, Simone Hoster, Eva Passera, Roberto Evangelista, Andrea Genuardi, Elisa Drandi, Daniela Ghislieri, Marco Barbero, Daniela Del Giudice, Ilaria Tani, Monica Moia, Riccardo Volpetti, Stefano Cabras, Maria Giuseppina Di Renzo, Nicola Merli, Francesco Vallisa, Daniele Spina, Michele Pascarella, Anna Latte, Giancarlo Patti, Caterina Fabbri, Alberto Guarini, Attilio Vitolo, Umberto Hermine, Olivier Kluin-Nelemans, Hanneke C Cortelazzo, Sergio Dreyling, Martin Ladetto, Marco Cancers (Basel) Article SIMPLE SUMMARY: The interest in using Machine-Learning (ML) techniques in clinical research is growing. We applied ML to build up a novel prognostic model from patients affected with Mantle Cell Lymphoma (MCL) enrolled in a phase III open-labeled, randomized clinical trial from the Fondazione Italiana Linfomi (FIL)—MCL0208. This is the first application of ML in a prospective clinical trial on MCL lymphoma. We applied a novel ML pipeline to a large cohort of patients for which several clinical variables have been collected at baseline, and assessed their prognostic value based on overall survival. We validated it on two independent data series provided by European MCL Network. Due to its flexibility, we believe that ML would be of tremendous help in the development of a novel MCL prognostic score aimed at re-defining risk stratification. ABSTRACT: Background: Multicenter clinical trials are producing growing amounts of clinical data. Machine Learning (ML) might facilitate the discovery of novel tools for prognostication and disease-stratification. Taking advantage of a systematic collection of multiple variables, we developed a model derived from data collected on 300 patients with mantle cell lymphoma (MCL) from the Fondazione Italiana Linfomi-MCL0208 phase III trial (NCT02354313). Methods: We developed a score with a clustering algorithm applied to clinical variables. The candidate score was correlated to overall survival (OS) and validated in two independent data series from the European MCL Network (NCT00209222, NCT00209209); Results: Three groups of patients were significantly discriminated: Low, Intermediate (Int), and High risk (High). Seven discriminants were identified by a feature reduction approach: albumin, Ki-67, lactate dehydrogenase, lymphocytes, platelets, bone marrow infiltration, and B-symptoms. Accordingly, patients in the Int and High groups had shorter OS rates than those in the Low and Int groups, respectively (Int→Low, HR: 3.1, 95% CI: 1.0–9.6; High→Int, HR: 2.3, 95% CI: 1.5–4.7). Based on the 7 markers, we defined the engineered MCL international prognostic index (eMIPI), which was validated and confirmed in two independent cohorts; Conclusions: We developed and validated a ML-based prognostic model for MCL. Even when currently limited to baseline predictors, our approach has high scalability potential. MDPI 2021-12-31 /pmc/articles/PMC8750124/ /pubmed/35008361 http://dx.doi.org/10.3390/cancers14010188 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zaccaria, Gian Maria Ferrero, Simone Hoster, Eva Passera, Roberto Evangelista, Andrea Genuardi, Elisa Drandi, Daniela Ghislieri, Marco Barbero, Daniela Del Giudice, Ilaria Tani, Monica Moia, Riccardo Volpetti, Stefano Cabras, Maria Giuseppina Di Renzo, Nicola Merli, Francesco Vallisa, Daniele Spina, Michele Pascarella, Anna Latte, Giancarlo Patti, Caterina Fabbri, Alberto Guarini, Attilio Vitolo, Umberto Hermine, Olivier Kluin-Nelemans, Hanneke C Cortelazzo, Sergio Dreyling, Martin Ladetto, Marco A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title | A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title_full | A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title_fullStr | A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title_full_unstemmed | A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title_short | A Clinical Prognostic Model Based on Machine Learning from the Fondazione Italiana Linfomi (FIL) MCL0208 Phase III Trial |
title_sort | clinical prognostic model based on machine learning from the fondazione italiana linfomi (fil) mcl0208 phase iii trial |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750124/ https://www.ncbi.nlm.nih.gov/pubmed/35008361 http://dx.doi.org/10.3390/cancers14010188 |
work_keys_str_mv | AT zaccariagianmaria aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ferrerosimone aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT hostereva aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT passeraroberto aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT evangelistaandrea aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT genuardielisa aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT drandidaniela aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ghislierimarco aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT barberodaniela aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT delgiudiceilaria aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT tanimonica aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT moiariccardo aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT volpettistefano aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT cabrasmariagiuseppina aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT direnzonicola aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT merlifrancesco aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT vallisadaniele aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT spinamichele aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT pascarellaanna aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT lattegiancarlo aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT patticaterina aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT fabbrialberto aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT guariniattilio aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT vitoloumberto aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT hermineolivier aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT kluinnelemanshannekec aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT cortelazzosergio aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT dreylingmartin aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ladettomarco aclinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT zaccariagianmaria clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ferrerosimone clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT hostereva clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT passeraroberto clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT evangelistaandrea clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT genuardielisa clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT drandidaniela clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ghislierimarco clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT barberodaniela clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT delgiudiceilaria clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT tanimonica clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT moiariccardo clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT volpettistefano clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT cabrasmariagiuseppina clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT direnzonicola clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT merlifrancesco clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT vallisadaniele clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT spinamichele clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT pascarellaanna clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT lattegiancarlo clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT patticaterina clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT fabbrialberto clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT guariniattilio clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT vitoloumberto clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT hermineolivier clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT kluinnelemanshannekec clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT cortelazzosergio clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT dreylingmartin clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial AT ladettomarco clinicalprognosticmodelbasedonmachinelearningfromthefondazioneitalianalinfomifilmcl0208phaseiiitrial |