Cargando…
Raman Investigation of the Processing Structure Relations in Individual Poly(ethylene terephthalate) Electrospun Fibers
Electrospun fibers often exhibit enhanced properties at reduced diameters, a characteristic now widely attributed to a high molecular orientation of the polymer chains along the fiber axis. A parameter that can affect the molecular organization is the type of collector onto which fibers are electros...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750136/ https://www.ncbi.nlm.nih.gov/pubmed/34643130 http://dx.doi.org/10.1177/00037028211049242 |
Sumario: | Electrospun fibers often exhibit enhanced properties at reduced diameters, a characteristic now widely attributed to a high molecular orientation of the polymer chains along the fiber axis. A parameter that can affect the molecular organization is the type of collector onto which fibers are electrospun. In this work, we use polarized confocal Raman spectromicroscopy to determine the incidence of the three most common types of collectors on the molecular orientation and structure in individual fibers of a broad range of diameters. Poly(ethylene terephthalate) is used as a model system for fibers of weakly crystalline polymers. A clear correlation emerges between the choice of collector, the induced molecular orientation, the fraction of trans conformers, and the degree of crystallinity within fibers. Quantitative structural information gathered by Raman contributes to a general description of the mechanism of action of the collectors based on the additional strain they exert on the forming fibers. |
---|