Cargando…
Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin
Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750434/ https://www.ncbi.nlm.nih.gov/pubmed/35011610 http://dx.doi.org/10.3390/cells11010048 |
_version_ | 1784631458578563072 |
---|---|
author | Ghoneim, Fatma Mohamed Abo-Elkhair, Salwa Mohamed Elsamanoudy, Ayman Zaky Shabaan, Dalia A. |
author_facet | Ghoneim, Fatma Mohamed Abo-Elkhair, Salwa Mohamed Elsamanoudy, Ayman Zaky Shabaan, Dalia A. |
author_sort | Ghoneim, Fatma Mohamed |
collection | PubMed |
description | Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia. |
format | Online Article Text |
id | pubmed-8750434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-87504342022-01-12 Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin Ghoneim, Fatma Mohamed Abo-Elkhair, Salwa Mohamed Elsamanoudy, Ayman Zaky Shabaan, Dalia A. Cells Article Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia. MDPI 2021-12-24 /pmc/articles/PMC8750434/ /pubmed/35011610 http://dx.doi.org/10.3390/cells11010048 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ghoneim, Fatma Mohamed Abo-Elkhair, Salwa Mohamed Elsamanoudy, Ayman Zaky Shabaan, Dalia A. Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title | Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title_full | Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title_fullStr | Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title_full_unstemmed | Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title_short | Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin |
title_sort | evaluation of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes and the ameliorative effect of fisetin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750434/ https://www.ncbi.nlm.nih.gov/pubmed/35011610 http://dx.doi.org/10.3390/cells11010048 |
work_keys_str_mv | AT ghoneimfatmamohamed evaluationofendothelialdysfunctionandautophagyinfibromyalgiarelatedvascularandcerebralcorticalchangesandtheameliorativeeffectoffisetin AT aboelkhairsalwamohamed evaluationofendothelialdysfunctionandautophagyinfibromyalgiarelatedvascularandcerebralcorticalchangesandtheameliorativeeffectoffisetin AT elsamanoudyaymanzaky evaluationofendothelialdysfunctionandautophagyinfibromyalgiarelatedvascularandcerebralcorticalchangesandtheameliorativeeffectoffisetin AT shabaandaliaa evaluationofendothelialdysfunctionandautophagyinfibromyalgiarelatedvascularandcerebralcorticalchangesandtheameliorativeeffectoffisetin |