Cargando…
Association between Exosomal miRNAs and Coronary Artery Disease by Next-Generation Sequencing
Background: Among various bio-informative molecules transferred by exosomes between cells, micro RNAs (miRNAs), which remain remarkably stable even after freeze-and-thaw cycles, are excellent candidates for potential biomarkers for coronary artery disease (CAD). Methods: Blood samples were collected...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750494/ https://www.ncbi.nlm.nih.gov/pubmed/35011660 http://dx.doi.org/10.3390/cells11010098 |
Sumario: | Background: Among various bio-informative molecules transferred by exosomes between cells, micro RNAs (miRNAs), which remain remarkably stable even after freeze-and-thaw cycles, are excellent candidates for potential biomarkers for coronary artery disease (CAD). Methods: Blood samples were collected from the coronary arteries of 214 patients diagnosed with three-vessel CAD and 140 without CAD. After precipitation extraction, the amounts of exosomes were found to decrease with increased age and three-vessel CAD. Next-generation sequencing was performed to further explore the possible relationship between exosomal miRNAs and CAD. Results: Eight exosomal miRNAs showed altered expression associated with CAD. The up-regulated miRNAs in CAD were miRNA-382-3p, miRNA-432-5p, miRNA-200a-3p, and miRNA-3613-3p. The down-regulated miRNAs were miRNA-125a-5p, miRNA-185-5p, miRNA-151a-3p, and miRNA-328-3p. Conclusion: We successfully demonstrated particular exosomal miRNAs that may serve as future biomarkers for CAD. |
---|