Cargando…
Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues
Autoencoders have been used to model single-cell mRNA-sequencing data with the purpose of denoising, visualization, data simulation, and dimensionality reduction. We, and others, have shown that autoencoders can be explainable models and interpreted in terms of biology. Here, we show that such autoe...
Autores principales: | Walbech, Julie Sparholt, Kinalis, Savvas, Winther, Ole, Nielsen, Finn Cilius, Bagger, Frederik Otzen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750521/ https://www.ncbi.nlm.nih.gov/pubmed/35011647 http://dx.doi.org/10.3390/cells11010085 |
Ejemplares similares
-
Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data
por: Kinalis, Savvas, et al.
Publicado: (2019) -
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
por: Bagger, Frederik Otzen, et al.
Publicado: (2019) -
A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data
por: Gabrielaite, Migle, et al.
Publicado: (2021) -
Unveiling mRNP composition by fluorescence correlation and cross-correlation spectroscopy using cell lysates
por: Mateu-Regué, Àngels, et al.
Publicado: (2021) -
Benchmarking full-length transcript single cell mRNA sequencing protocols
por: Probst, Victoria, et al.
Publicado: (2022)