Cargando…

Development of Selection Indices for Improvement of Seed Yield and Lipid Composition in Bambara Groundnut (Vigna subterranea (L.) Verdc.)

The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded...

Descripción completa

Detalles Bibliográficos
Autores principales: Azman Halimi, Razlin, Raymond, Carolyn A., Barkla, Bronwyn J., Mayes, Sean, King, Graham J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750730/
https://www.ncbi.nlm.nih.gov/pubmed/35010212
http://dx.doi.org/10.3390/foods11010086
Descripción
Sumario:The underutilised grain legume bambara groundnut (Vigna subterranea) has the potential to contribute significantly to nutritional security. However, the lack of commercial cultivars has hindered its wider adoption and utilisation as a food source. The development of competitive cultivars is impeded by (1) lack of systematic data describing variation in nutritional composition within the gene pool, and (2) a poor understanding of how concentrations of different nutritional components interact. In this study, we analysed seed lipid and protein concentration and lipid composition within a collection of 100 lines representing the global gene pool. Seed protein and lipid varied over twofold with a normal distribution, but no significant statistical correlation was detected between the two components. Seed lipid concentration (4.2–8.8 g/100 g) is primarily determined by the proportion of oleic acid (r(2) = 0.45). Yield and composition data for a subset of 40 lines were then used to test selection parameters for high yielding, high lipid breeding lines. From five selection indices tested using 15 scenarios, an index based on the seed number, seed weight, and oleic acid yielded a >50% expected increase in each of the mean values of seed number, pod dry weight, seed dry weight, and seed size, as well as an expected 7% increase in seed lipid concentration.