Cargando…
The Impact of Resampling and Denoising Deep Learning Algorithms on Radiomics in Brain Metastases MRI
SIMPLE SUMMARY: Due to the central role of magnetic resonance Imaging (MRI) in the management of patients with cancer, waiting lists exceed clinically relevant delays. For this reason, many research groups and MRI manufacturers develop algorithms as resampling and denoising models to allow faster ac...
Autores principales: | Moummad, Ilyass, Jaudet, Cyril, Lechervy, Alexis, Valable, Samuel, Raboutet, Charlotte, Soilihi, Zamila, Thariat, Juliette, Falzone, Nadia, Lacroix, Joëlle, Batalla, Alain, Corroyer-Dulmont, Aurélien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750741/ https://www.ncbi.nlm.nih.gov/pubmed/35008198 http://dx.doi.org/10.3390/cancers14010036 |
Ejemplares similares
-
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
por: Jaudet, Cyril, et al.
Publicado: (2021) -
Deep Hybrid Learning Prediction of Patient-Specific Quality Assurance in Radiotherapy: Implementation in Clinical Routine
por: Moreau, Noémie, et al.
Publicado: (2023) -
Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice
por: Corroyer-Dulmont, Aurélien, et al.
Publicado: (2021) -
Deep Learning Denoising Improves and Homogenizes Patient [(18)F]FDG PET Image Quality in Digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2023) -
Artificial intelligence-based PET denoising could allow a two-fold reduction in [(18)F]FDG PET acquisition time in digital PET/CT
por: Weyts, Kathleen, et al.
Publicado: (2022)