Cargando…
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
In this paper, we present a data-driven method for the uncertainty-aware prediction of chemical reaction yields. The reactants and products in a chemical reaction are represented as a set of molecular graphs. The predictive distribution of the yield is modeled as a graph neural network that directly...
Autores principales: | Kwon, Youngchun, Lee, Dongseon, Choi, Youn-Suk, Kang, Seokho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8750748/ https://www.ncbi.nlm.nih.gov/pubmed/35012654 http://dx.doi.org/10.1186/s13321-021-00579-z |
Ejemplares similares
-
Compressed graph representation for scalable molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2020) -
Exploring Optimal
Reaction Conditions Guided by Graph
Neural Networks and Bayesian Optimization
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
Molecular search by NMR spectrum based on evaluation of matching between spectrum and molecule
por: Kwon, Youngchun, et al.
Publicado: (2021) -
Evolutionary design of molecules based on deep learning and a genetic algorithm
por: Kwon, Youngchun, et al.
Publicado: (2021)