Cargando…

Vaccinations, Mobility and COVID-19 Transmission

In order to prevent the spread of coronavirus disease 2019 (COVID-19), 52.4% of the world population had received at least one dose of a vaccine at17 November 2021, but little is known about the non-pharmaceutical aspect of vaccination. Here we empirically examine the impact of vaccination on human...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jianfeng, Deng, Chao, Gu, Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751025/
https://www.ncbi.nlm.nih.gov/pubmed/35010357
http://dx.doi.org/10.3390/ijerph19010097
Descripción
Sumario:In order to prevent the spread of coronavirus disease 2019 (COVID-19), 52.4% of the world population had received at least one dose of a vaccine at17 November 2021, but little is known about the non-pharmaceutical aspect of vaccination. Here we empirically examine the impact of vaccination on human behaviors and COVID-19 transmission via structural equation modeling. The results suggest that, from a non-pharmaceutical perspective, the effectiveness of COVID-19 vaccines is related to human behaviors, in this case, mobility; vaccination slows the spread of COVID-19 in the regions where vaccination is negatively related to mobility, but such an effect is not observed in the regions where vaccination and mobility have positive correlations. This article highlights the significance of mobility in realizing the effectiveness of COVID-19 vaccines; even with large-scale vaccination, non-pharmaceutical interventions, such as social distancing, are still required to contain the transmission of COVID-19.