Cargando…
Performance of binary prediction models in high-correlation low-dimensional settings: a comparison of methods
BACKGROUND: Clinical prediction models are developed widely across medical disciplines. When predictors in such models are highly collinear, unexpected or spurious predictor-outcome associations may occur, thereby potentially reducing face-validity of the prediction model. Collinearity can be dealt...
Autores principales: | Leeuwenberg, Artuur M., van Smeden, Maarten, Langendijk, Johannes A., van der Schaaf, Arjen, Mauer, Murielle E., Moons, Karel G. M., Reitsma, Johannes B., Schuit, Ewoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751246/ https://www.ncbi.nlm.nih.gov/pubmed/35016734 http://dx.doi.org/10.1186/s41512-021-00115-5 |
Ejemplares similares
-
Prediction models for COVID-19 clinical decision making
por: Leeuwenberg, Artuur M, et al.
Publicado: (2020) -
Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review
por: de Hond, Anne A. H., et al.
Publicado: (2022) -
Sample size for binary logistic prediction models: Beyond events per
variable criteria
por: van Smeden, Maarten, et al.
Publicado: (2018) -
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
por: van Smeden, Maarten, et al.
Publicado: (2016) -
A generic nomogram for multinomial prediction models: theory and guidance for construction
por: van Smeden, Maarten, et al.
Publicado: (2017)