Cargando…

Identification of a competing endogenous RNA network related to immune signature in clear cell renal cell carcinoma

Clear cell renal cell carcinoma (ccRCC) is a fatal cancer of the urinary system. Long non-coding RNAs (lncRNAs) act as competitive endogenous RNAs (ceRNAs) involving the ccRCC progression. However, the relationship between the ceRNA network and immune signature is largely unknown. In this study, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuke, Dai, Jiangwen, Huang, Weifeng, Chen, Qingsong, Chen, Wei, He, Qiying, Chen, Feng, Zhang, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751601/
https://www.ncbi.nlm.nih.gov/pubmed/34958632
http://dx.doi.org/10.18632/aging.203784
Descripción
Sumario:Clear cell renal cell carcinoma (ccRCC) is a fatal cancer of the urinary system. Long non-coding RNAs (lncRNAs) act as competitive endogenous RNAs (ceRNAs) involving the ccRCC progression. However, the relationship between the ceRNA network and immune signature is largely unknown. In this study, the ccRCC-related gene expression profiles retrieved from the TCGA database were used first to identify the differentially expressed genes through differential gene expression analysis and weighted gene co-expression network analysis. The interaction among differentially expressed lncRNAs, miRNAs, and mRNAs were matched using public databases. As a result, a ceRNA network was developed that contained 144 lncRNAs, 23 miRNAs, as well as 62 mRNAs. Four of 144 lncRNAs including LINC00943, SRD5A3-AS1, LINC02345, and U62317.3 were identified through LASSO regression and Cox regression analyses, and were used to create a prognostic risk model. Then, the ccRCC samples were divided into the high- and low-risk groups depending on their risk scores. ROC curves, Kaplan-Meier survival analysis, and the survival risk plots indicated that the predictive performance of our developed risk model was accurate. Moreover, the CIBERSORT algorithm was used to measure the infiltration levels of immune cells in the ccRCC samples. The further genomic analysis illustrated a positive correlation between most immune checkpoint blockade-related genes and the risk score. In conclusion, the present findings effectually contribute to the comprehensive understanding of the ccRCC pathogenesis, and may offer a reference for developing novel therapeutic and prognostic biomarkers.