Cargando…
A simple method for unsupervised anomaly detection: An application to Web time series data
We propose a simple anomaly detection method that is applicable to unlabeled time series data and is sufficiently tractable, even for non-technical entities, by using the density ratio estimation based on the state space model. Our detection rule is based on the ratio of log-likelihoods estimated by...
Autores principales: | Yoshihara, Keisuke, Takahashi, Kei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752013/ https://www.ncbi.nlm.nih.gov/pubmed/35015791 http://dx.doi.org/10.1371/journal.pone.0262463 |
Ejemplares similares
-
Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
por: Xu, Kang, et al.
Publicado: (2023) -
Unsupervised Anomaly Detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions
por: Belay, Mohammed Ayalew, et al.
Publicado: (2023) -
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
por: Cherdo, Yann, et al.
Publicado: (2023) -
A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data
por: Goldstein, Markus, et al.
Publicado: (2016) -
Unsupervised Anomaly Detection Applied to Φ-OTDR
por: Almudévar, Antonio, et al.
Publicado: (2022)