Cargando…
Machine Learning-Based Model for the Prognosis of Postoperative Gastric Cancer
BACKGROUND: The use of machine learning (ML) in predicting disease prognosis has increased, and scientists have adopted different methods for cancer classification to optimize the early screening of cancer to determine its prognosis in advance. In this study, we aimed at improving the prediction acc...
Autores principales: | Liu, Donghui, Wang, Xuyao, Li, Long, Jiang, Qingxin, Li, Xiaoxue, Liu, Menglin, Wang, Wenxin, Shi, Enhong, Zhang, Chenyao, Wang, Yinghui, Zhang, Yan, Wang, Liru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752070/ https://www.ncbi.nlm.nih.gov/pubmed/35027848 http://dx.doi.org/10.2147/CMAR.S342352 |
Ejemplares similares
-
SMYD Family Members Serve as Potential Prognostic Markers and Correlate with Immune Infiltrates in Gastric Cancer
por: Liu, Donghui, et al.
Publicado: (2023) -
Novel nomogram to predict the overall survival of postoperative patients with gastric signet
por: Liu, Donghui, et al.
Publicado: (2023) -
Recognition of DNA Methylation Molecular Features for Diagnosis and Prognosis in Gastric Cancer
por: Liu, Donghui, et al.
Publicado: (2021) -
Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors
por: Liu, Donghui, et al.
Publicado: (2021) -
Predicting postoperative gastric cancer prognosis based on inflammatory factors and machine learning technology
por: Zhou, Cheng-Mao, et al.
Publicado: (2023)