Cargando…

Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm

Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐...

Descripción completa

Detalles Bibliográficos
Autores principales: Asiimwe, Innocent G., Blockman, Marc, Cohen, Karen, Cupido, Clint, Hutchinson, Claire, Jacobson, Barry, Lamorde, Mohammed, Morgan, Jennie, Mouton, Johannes P., Nakagaayi, Doreen, Okello, Emmy, Schapkaitz, Elise, Sekaggya‐Wiltshire, Christine, Semakula, Jerome R., Waitt, Catriona, Zhang, Eunice J., Jorgensen, Andrea L., Pirmohamed, Munir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752108/
https://www.ncbi.nlm.nih.gov/pubmed/34889080
http://dx.doi.org/10.1002/psp4.12740
_version_ 1784631822538244096
author Asiimwe, Innocent G.
Blockman, Marc
Cohen, Karen
Cupido, Clint
Hutchinson, Claire
Jacobson, Barry
Lamorde, Mohammed
Morgan, Jennie
Mouton, Johannes P.
Nakagaayi, Doreen
Okello, Emmy
Schapkaitz, Elise
Sekaggya‐Wiltshire, Christine
Semakula, Jerome R.
Waitt, Catriona
Zhang, Eunice J.
Jorgensen, Andrea L.
Pirmohamed, Munir
author_facet Asiimwe, Innocent G.
Blockman, Marc
Cohen, Karen
Cupido, Clint
Hutchinson, Claire
Jacobson, Barry
Lamorde, Mohammed
Morgan, Jennie
Mouton, Johannes P.
Nakagaayi, Doreen
Okello, Emmy
Schapkaitz, Elise
Sekaggya‐Wiltshire, Christine
Semakula, Jerome R.
Waitt, Catriona
Zhang, Eunice J.
Jorgensen, Andrea L.
Pirmohamed, Munir
author_sort Asiimwe, Innocent G.
collection PubMed
description Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐Saharan Black‐African patients and (b) externally validated a previously developed Warfarin Anticoagulation in Patients in Sub‐Saharan Africa (War‐PATH) clinical dose–initiation algorithm. The development cohort included 364 patients recruited from eight outpatient clinics and hospital departments in Uganda and South Africa (June 2018–July 2019). Validation was conducted using an external validation cohort (270 patients recruited from August 2019 to March 2020 in 12 outpatient clinics and hospital departments). Based on the mean absolute error (MAE; mean of absolute differences between the actual and predicted doses), random forest regression (12.07 mg/week; 95% confidence interval [CI], 10.39–13.76) was the best performing machine‐learning technique in the external validation cohort, whereas the worst performing technique was model trees (17.59 mg/week; 95% CI, 15.75–19.43). By comparison, the simple, commonly used regression technique (ordinary least squares) performed similarly to more complex supervised machine‐learning techniques and achieved an MAE of 13.01 mg/week (95% CI, 11.45–14.58). In summary, we have demonstrated that simpler regression techniques perform similarly to more complex supervised machine‐learning techniques. We have also externally validated our previously developed clinical dose–initiation algorithm, which is being prospectively tested for clinical utility.
format Online
Article
Text
id pubmed-8752108
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-87521082022-01-14 Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm Asiimwe, Innocent G. Blockman, Marc Cohen, Karen Cupido, Clint Hutchinson, Claire Jacobson, Barry Lamorde, Mohammed Morgan, Jennie Mouton, Johannes P. Nakagaayi, Doreen Okello, Emmy Schapkaitz, Elise Sekaggya‐Wiltshire, Christine Semakula, Jerome R. Waitt, Catriona Zhang, Eunice J. Jorgensen, Andrea L. Pirmohamed, Munir CPT Pharmacometrics Syst Pharmacol Research Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐Saharan Black‐African patients and (b) externally validated a previously developed Warfarin Anticoagulation in Patients in Sub‐Saharan Africa (War‐PATH) clinical dose–initiation algorithm. The development cohort included 364 patients recruited from eight outpatient clinics and hospital departments in Uganda and South Africa (June 2018–July 2019). Validation was conducted using an external validation cohort (270 patients recruited from August 2019 to March 2020 in 12 outpatient clinics and hospital departments). Based on the mean absolute error (MAE; mean of absolute differences between the actual and predicted doses), random forest regression (12.07 mg/week; 95% confidence interval [CI], 10.39–13.76) was the best performing machine‐learning technique in the external validation cohort, whereas the worst performing technique was model trees (17.59 mg/week; 95% CI, 15.75–19.43). By comparison, the simple, commonly used regression technique (ordinary least squares) performed similarly to more complex supervised machine‐learning techniques and achieved an MAE of 13.01 mg/week (95% CI, 11.45–14.58). In summary, we have demonstrated that simpler regression techniques perform similarly to more complex supervised machine‐learning techniques. We have also externally validated our previously developed clinical dose–initiation algorithm, which is being prospectively tested for clinical utility. John Wiley and Sons Inc. 2021-12-09 2022-01 /pmc/articles/PMC8752108/ /pubmed/34889080 http://dx.doi.org/10.1002/psp4.12740 Text en © 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Asiimwe, Innocent G.
Blockman, Marc
Cohen, Karen
Cupido, Clint
Hutchinson, Claire
Jacobson, Barry
Lamorde, Mohammed
Morgan, Jennie
Mouton, Johannes P.
Nakagaayi, Doreen
Okello, Emmy
Schapkaitz, Elise
Sekaggya‐Wiltshire, Christine
Semakula, Jerome R.
Waitt, Catriona
Zhang, Eunice J.
Jorgensen, Andrea L.
Pirmohamed, Munir
Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title_full Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title_fullStr Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title_full_unstemmed Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title_short Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
title_sort stable warfarin dose prediction in sub‐saharan african patients: a machine‐learning approach and external validation of a clinical dose–initiation algorithm
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752108/
https://www.ncbi.nlm.nih.gov/pubmed/34889080
http://dx.doi.org/10.1002/psp4.12740
work_keys_str_mv AT asiimweinnocentg stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT blockmanmarc stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT cohenkaren stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT cupidoclint stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT hutchinsonclaire stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT jacobsonbarry stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT lamordemohammed stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT morganjennie stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT moutonjohannesp stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT nakagaayidoreen stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT okelloemmy stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT schapkaitzelise stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT sekaggyawiltshirechristine stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT semakulajeromer stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT waittcatriona stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT zhangeunicej stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT jorgensenandreal stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm
AT pirmohamedmunir stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm