Cargando…
Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm
Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752108/ https://www.ncbi.nlm.nih.gov/pubmed/34889080 http://dx.doi.org/10.1002/psp4.12740 |
_version_ | 1784631822538244096 |
---|---|
author | Asiimwe, Innocent G. Blockman, Marc Cohen, Karen Cupido, Clint Hutchinson, Claire Jacobson, Barry Lamorde, Mohammed Morgan, Jennie Mouton, Johannes P. Nakagaayi, Doreen Okello, Emmy Schapkaitz, Elise Sekaggya‐Wiltshire, Christine Semakula, Jerome R. Waitt, Catriona Zhang, Eunice J. Jorgensen, Andrea L. Pirmohamed, Munir |
author_facet | Asiimwe, Innocent G. Blockman, Marc Cohen, Karen Cupido, Clint Hutchinson, Claire Jacobson, Barry Lamorde, Mohammed Morgan, Jennie Mouton, Johannes P. Nakagaayi, Doreen Okello, Emmy Schapkaitz, Elise Sekaggya‐Wiltshire, Christine Semakula, Jerome R. Waitt, Catriona Zhang, Eunice J. Jorgensen, Andrea L. Pirmohamed, Munir |
author_sort | Asiimwe, Innocent G. |
collection | PubMed |
description | Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐Saharan Black‐African patients and (b) externally validated a previously developed Warfarin Anticoagulation in Patients in Sub‐Saharan Africa (War‐PATH) clinical dose–initiation algorithm. The development cohort included 364 patients recruited from eight outpatient clinics and hospital departments in Uganda and South Africa (June 2018–July 2019). Validation was conducted using an external validation cohort (270 patients recruited from August 2019 to March 2020 in 12 outpatient clinics and hospital departments). Based on the mean absolute error (MAE; mean of absolute differences between the actual and predicted doses), random forest regression (12.07 mg/week; 95% confidence interval [CI], 10.39–13.76) was the best performing machine‐learning technique in the external validation cohort, whereas the worst performing technique was model trees (17.59 mg/week; 95% CI, 15.75–19.43). By comparison, the simple, commonly used regression technique (ordinary least squares) performed similarly to more complex supervised machine‐learning techniques and achieved an MAE of 13.01 mg/week (95% CI, 11.45–14.58). In summary, we have demonstrated that simpler regression techniques perform similarly to more complex supervised machine‐learning techniques. We have also externally validated our previously developed clinical dose–initiation algorithm, which is being prospectively tested for clinical utility. |
format | Online Article Text |
id | pubmed-8752108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87521082022-01-14 Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm Asiimwe, Innocent G. Blockman, Marc Cohen, Karen Cupido, Clint Hutchinson, Claire Jacobson, Barry Lamorde, Mohammed Morgan, Jennie Mouton, Johannes P. Nakagaayi, Doreen Okello, Emmy Schapkaitz, Elise Sekaggya‐Wiltshire, Christine Semakula, Jerome R. Waitt, Catriona Zhang, Eunice J. Jorgensen, Andrea L. Pirmohamed, Munir CPT Pharmacometrics Syst Pharmacol Research Warfarin remains the most widely prescribed oral anticoagulant in sub‐Saharan Africa. However, because of its narrow therapeutic index, dosing can be challenging. We have therefore (a) evaluated and compared the performance of 21 machine‐learning techniques in predicting stable warfarin dose in sub‐Saharan Black‐African patients and (b) externally validated a previously developed Warfarin Anticoagulation in Patients in Sub‐Saharan Africa (War‐PATH) clinical dose–initiation algorithm. The development cohort included 364 patients recruited from eight outpatient clinics and hospital departments in Uganda and South Africa (June 2018–July 2019). Validation was conducted using an external validation cohort (270 patients recruited from August 2019 to March 2020 in 12 outpatient clinics and hospital departments). Based on the mean absolute error (MAE; mean of absolute differences between the actual and predicted doses), random forest regression (12.07 mg/week; 95% confidence interval [CI], 10.39–13.76) was the best performing machine‐learning technique in the external validation cohort, whereas the worst performing technique was model trees (17.59 mg/week; 95% CI, 15.75–19.43). By comparison, the simple, commonly used regression technique (ordinary least squares) performed similarly to more complex supervised machine‐learning techniques and achieved an MAE of 13.01 mg/week (95% CI, 11.45–14.58). In summary, we have demonstrated that simpler regression techniques perform similarly to more complex supervised machine‐learning techniques. We have also externally validated our previously developed clinical dose–initiation algorithm, which is being prospectively tested for clinical utility. John Wiley and Sons Inc. 2021-12-09 2022-01 /pmc/articles/PMC8752108/ /pubmed/34889080 http://dx.doi.org/10.1002/psp4.12740 Text en © 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Asiimwe, Innocent G. Blockman, Marc Cohen, Karen Cupido, Clint Hutchinson, Claire Jacobson, Barry Lamorde, Mohammed Morgan, Jennie Mouton, Johannes P. Nakagaayi, Doreen Okello, Emmy Schapkaitz, Elise Sekaggya‐Wiltshire, Christine Semakula, Jerome R. Waitt, Catriona Zhang, Eunice J. Jorgensen, Andrea L. Pirmohamed, Munir Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title | Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title_full | Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title_fullStr | Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title_full_unstemmed | Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title_short | Stable warfarin dose prediction in sub‐Saharan African patients: A machine‐learning approach and external validation of a clinical dose–initiation algorithm |
title_sort | stable warfarin dose prediction in sub‐saharan african patients: a machine‐learning approach and external validation of a clinical dose–initiation algorithm |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752108/ https://www.ncbi.nlm.nih.gov/pubmed/34889080 http://dx.doi.org/10.1002/psp4.12740 |
work_keys_str_mv | AT asiimweinnocentg stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT blockmanmarc stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT cohenkaren stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT cupidoclint stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT hutchinsonclaire stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT jacobsonbarry stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT lamordemohammed stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT morganjennie stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT moutonjohannesp stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT nakagaayidoreen stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT okelloemmy stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT schapkaitzelise stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT sekaggyawiltshirechristine stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT semakulajeromer stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT waittcatriona stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT zhangeunicej stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT jorgensenandreal stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm AT pirmohamedmunir stablewarfarindosepredictioninsubsaharanafricanpatientsamachinelearningapproachandexternalvalidationofaclinicaldoseinitiationalgorithm |