Cargando…
Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent
Akkermansia muciniphila is a mucin-degrading bacterium found in the human gut and is often associated with positive human health. However, despite being detected by as early as 1 month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abu...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752153/ https://www.ncbi.nlm.nih.gov/pubmed/34669436 http://dx.doi.org/10.1128/AEM.01487-21 |
_version_ | 1784631827780075520 |
---|---|
author | Luna, Estefani Parkar, Shanthi G. Kirmiz, Nina Hartel, Stephanie Hearn, Erik Hossine, Marziiah Kurdian, Arinnae Mendoza, Claudia Orr, Katherine Padilla, Loren Ramirez, Katherine Salcedo, Priscilla Serrano, Erik Choudhury, Biswa Paulchakrabarti, Mousumi Parker, Craig T. Huynh, Steven Cooper, Kerry Flores, Gilberto E. |
author_facet | Luna, Estefani Parkar, Shanthi G. Kirmiz, Nina Hartel, Stephanie Hearn, Erik Hossine, Marziiah Kurdian, Arinnae Mendoza, Claudia Orr, Katherine Padilla, Loren Ramirez, Katherine Salcedo, Priscilla Serrano, Erik Choudhury, Biswa Paulchakrabarti, Mousumi Parker, Craig T. Huynh, Steven Cooper, Kerry Flores, Gilberto E. |
author_sort | Luna, Estefani |
collection | PubMed |
description | Akkermansia muciniphila is a mucin-degrading bacterium found in the human gut and is often associated with positive human health. However, despite being detected by as early as 1 month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria has been shown to grow well on HMOs and mucin. We therefore examined the ability of genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85 genomes representing the four known Akkermansia phylogroups to examine their metabolic potential to degrade HMOs. Furthermore, we examined the ability of representative isolates to grow on individual HMOs in a mucin background and analyzed the resulting metabolites. All Akkermansia genomes were equipped with an array of glycoside hydrolases associated with HMO deconstruction. Representative strains were all able to grow on HMOs with various efficiencies and growth yields. Strain CSUN-19, belonging to the AmIV phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs. This activity may be partially related to the increased copy numbers and/or the enzyme activities of the α-fucosidases, α-sialidases, and β-galactosidases. This study examines the utilization of individual purified HMOs by Akkermansia strains representing all known phylogroups. Further studies are required to examine how HMO ingestion influences gut microbial ecology in infants harboring different Akkermansia phylogroups. IMPORTANCE Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants, including the recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila Muc(T), belonging to the AmI phylogroup, contributes to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacities of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each phylogroup contained differences in their genomic capacities to deconstruct HMOs, and representative strains of each phylogroup were able to grow using HMOs. These Akkermansia-HMO interactions potentially influence gut microbial ecology in early life, a critical time for the development of the gut microbiome and infant health. |
format | Online Article Text |
id | pubmed-8752153 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-87521532022-01-24 Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent Luna, Estefani Parkar, Shanthi G. Kirmiz, Nina Hartel, Stephanie Hearn, Erik Hossine, Marziiah Kurdian, Arinnae Mendoza, Claudia Orr, Katherine Padilla, Loren Ramirez, Katherine Salcedo, Priscilla Serrano, Erik Choudhury, Biswa Paulchakrabarti, Mousumi Parker, Craig T. Huynh, Steven Cooper, Kerry Flores, Gilberto E. Appl Environ Microbiol Microbial Ecology Akkermansia muciniphila is a mucin-degrading bacterium found in the human gut and is often associated with positive human health. However, despite being detected by as early as 1 month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria has been shown to grow well on HMOs and mucin. We therefore examined the ability of genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85 genomes representing the four known Akkermansia phylogroups to examine their metabolic potential to degrade HMOs. Furthermore, we examined the ability of representative isolates to grow on individual HMOs in a mucin background and analyzed the resulting metabolites. All Akkermansia genomes were equipped with an array of glycoside hydrolases associated with HMO deconstruction. Representative strains were all able to grow on HMOs with various efficiencies and growth yields. Strain CSUN-19, belonging to the AmIV phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs. This activity may be partially related to the increased copy numbers and/or the enzyme activities of the α-fucosidases, α-sialidases, and β-galactosidases. This study examines the utilization of individual purified HMOs by Akkermansia strains representing all known phylogroups. Further studies are required to examine how HMO ingestion influences gut microbial ecology in infants harboring different Akkermansia phylogroups. IMPORTANCE Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants, including the recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila Muc(T), belonging to the AmI phylogroup, contributes to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacities of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each phylogroup contained differences in their genomic capacities to deconstruct HMOs, and representative strains of each phylogroup were able to grow using HMOs. These Akkermansia-HMO interactions potentially influence gut microbial ecology in early life, a critical time for the development of the gut microbiome and infant health. American Society for Microbiology 2022-01-11 /pmc/articles/PMC8752153/ /pubmed/34669436 http://dx.doi.org/10.1128/AEM.01487-21 Text en Copyright © 2022 Luna et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Microbial Ecology Luna, Estefani Parkar, Shanthi G. Kirmiz, Nina Hartel, Stephanie Hearn, Erik Hossine, Marziiah Kurdian, Arinnae Mendoza, Claudia Orr, Katherine Padilla, Loren Ramirez, Katherine Salcedo, Priscilla Serrano, Erik Choudhury, Biswa Paulchakrabarti, Mousumi Parker, Craig T. Huynh, Steven Cooper, Kerry Flores, Gilberto E. Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title | Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title_full | Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title_fullStr | Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title_full_unstemmed | Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title_short | Utilization Efficiency of Human Milk Oligosaccharides by Human-Associated Akkermansia Is Strain Dependent |
title_sort | utilization efficiency of human milk oligosaccharides by human-associated akkermansia is strain dependent |
topic | Microbial Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752153/ https://www.ncbi.nlm.nih.gov/pubmed/34669436 http://dx.doi.org/10.1128/AEM.01487-21 |
work_keys_str_mv | AT lunaestefani utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT parkarshanthig utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT kirmiznina utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT hartelstephanie utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT hearnerik utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT hossinemarziiah utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT kurdianarinnae utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT mendozaclaudia utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT orrkatherine utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT padillaloren utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT ramirezkatherine utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT salcedopriscilla utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT serranoerik utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT choudhurybiswa utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT paulchakrabartimousumi utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT parkercraigt utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT huynhsteven utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT cooperkerry utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent AT floresgilbertoe utilizationefficiencyofhumanmilkoligosaccharidesbyhumanassociatedakkermansiaisstraindependent |