Cargando…

The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer

Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bri...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yingying, Guo, Nan, Yang, Ting, Yan, Jianghong, Wang, Wenjun, Li, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752222/
https://www.ncbi.nlm.nih.gov/pubmed/35028002
http://dx.doi.org/10.1155/2022/1458143
Descripción
Sumario:Artemisinin (ART) is a bioactive molecule derived from the Chinese medicinal plant Artemisia annua (Asteraceae). ART and artemisinin derivatives (ARTs) have been effectively used for antimalaria treatment. The structure of ART is composed of a sesquiterpene lactone, including a peroxide internal bridge that is essential for its activity. In addition to their well-known antimalarial effects, ARTs have been shown recently to resist a wide range of tumors. The antineoplastic mechanisms of ART mainly include cell cycle inhibition, inhibition of tumor angiogenesis, DNA damage, and ferroptosis. In particular, ferroptosis is a novel nonapoptotic type of programmed cell death. However, the antitumor mechanisms of ARTs by regulating ferroptosis remain unclear. Through this review, we focus on the potential antitumor function of ARTs by acting on ferroptosis, including the regulation of iron metabolism, generation of reactive oxygen species (ROS), and activation of endoplasmic reticulum stress (ERS). This article systematically reviews the recent progress in ferroptosis research and provides a basis for ARTs as an anticancer drug in clinical practice.