Cargando…
Proof Complexity of Modal Resolution
We investigate the proof complexity of modal resolution systems developed by Nalon and Dixon (J Algorithms 62(3–4):117–134, 2007) and Nalon et al. (in: Automated reasoning with analytic Tableaux and related methods—24th international conference, (TABLEAUX’15), pp 185–200, 2015), which form the basis...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752563/ https://www.ncbi.nlm.nih.gov/pubmed/35068630 http://dx.doi.org/10.1007/s10817-021-09609-9 |
Sumario: | We investigate the proof complexity of modal resolution systems developed by Nalon and Dixon (J Algorithms 62(3–4):117–134, 2007) and Nalon et al. (in: Automated reasoning with analytic Tableaux and related methods—24th international conference, (TABLEAUX’15), pp 185–200, 2015), which form the basis of modal theorem proving (Nalon et al., in: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI’17), pp 4919–4923, 2017). We complement these calculi by a new tighter variant and show that proofs can be efficiently translated between all these variants, meaning that the calculi are equivalent from a proof complexity perspective. We then develop the first lower bound technique for modal resolution using Prover–Delayer games, which can be used to establish “genuine” modal lower bounds for size of dag-like modal resolution proofs. We illustrate the technique by devising a new modal pigeonhole principle, which we demonstrate to require exponential-size proofs in modal resolution. Finally, we compare modal resolution to the modal Frege systems of Hrubeš (Ann Pure Appl Log 157(2–3):194–205, 2009) and obtain a “genuinely” modal separation. |
---|