Cargando…
Learning self-driven collective dynamics with graph networks
Despite decades of theoretical research, the nature of the self-driven collective motion remains indigestible and controversial, while the phase transition process of its dynamic is a major research issue. Recent methods propose to infer the phase transition process from various artificially extract...
Autores principales: | Wang, Rui, Fang, Feiteng, Cui, Jiamei, Zheng, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752591/ https://www.ncbi.nlm.nih.gov/pubmed/35017588 http://dx.doi.org/10.1038/s41598-021-04456-5 |
Ejemplares similares
-
Rumor detection driven by graph attention capsule network on dynamic propagation structures
por: Yang, Peng, et al.
Publicado: (2022) -
GFCNet: Utilizing graph feature collection networks for coronavirus knowledge graph embeddings
por: Xie, Zhiwen, et al.
Publicado: (2022) -
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
por: Xie, Tian, et al.
Publicado: (2019) -
Dynamic Heterogeneous User Generated Contents-Driven Relation Assessment via Graph Representation Learning
por: Huang, Ru, et al.
Publicado: (2022) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020)