Cargando…
Hybrid systems using residual modeling for sea surface temperature forecasting
The sea surface temperature (SST) is an environmental indicator closely related to climate, weather, and atmospheric events worldwide. Its forecasting is essential for supporting the decision of governments and environmental organizations. Literature has shown that single machine learning (ML) model...
Autores principales: | de Mattos Neto, Paulo S. G., Cavalcanti, George D. C., de O. Santos Júnior, Domingos S., Silva, Eraylson G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752630/ https://www.ncbi.nlm.nih.gov/pubmed/35017537 http://dx.doi.org/10.1038/s41598-021-04238-z |
Ejemplares similares
-
An Approach to Improve the Performance of PM Forecasters
por: de Mattos Neto, Paulo S. G., et al.
Publicado: (2015) -
Application of Entropy Ensemble Filter in Neural Network Forecasts of Tropical Pacific Sea Surface Temperatures
por: Foroozand, Hossein, et al.
Publicado: (2018) -
On the interchangeability of sea-surface and near-surface air temperature anomalies in climatologies
por: Rubino, Angelo, et al.
Publicado: (2020) -
Sea spray aerosol concentration modulated by sea surface temperature
por: Liu, Shang, et al.
Publicado: (2021) -
Energy Consumption Forecasting for Smart Meters Using Extreme Learning Machine Ensemble
por: de Mattos Neto, Paulo S. G., et al.
Publicado: (2021)