Cargando…
Zero-preserving imputation of single-cell RNA-seq data
A key challenge in analyzing single cell RNA-sequencing data is the large number of false zeros, where genes actually expressed in a given cell are incorrectly measured as unexpressed. We present a method based on low-rank matrix approximation which imputes these values while preserving biologically...
Autores principales: | Linderman, George C., Zhao, Jun, Roulis, Manolis, Bielecki, Piotr, Flavell, Richard A., Nadler, Boaz, Kluger, Yuval |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752663/ https://www.ncbi.nlm.nih.gov/pubmed/35017482 http://dx.doi.org/10.1038/s41467-021-27729-z |
Ejemplares similares
-
Fast Interpolation-based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data
por: Linderman, George C., et al.
Publicado: (2019) -
AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
por: Talwar, Divyanshu, et al.
Publicado: (2018) -
An accurate and robust imputation method scImpute for single-cell RNA-seq data
por: Li, Wei Vivian, et al.
Publicado: (2018) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019)