Cargando…

Vision, cognition, and walking stability in young adults

Downward gazing is often observed when walking requires guidance. This gaze behavior is thought to promote walking stability through anticipatory stepping control. This study is part of an ongoing effort to investigate whether downward gazing also serves to enhance postural control, which can promot...

Descripción completa

Detalles Bibliográficos
Autores principales: Koren, Yogev, Mairon, Rotem, Sofer, Ilay, Parmet, Yisrael, Ben-Shahar, Ohad, Bar-Haim, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752684/
https://www.ncbi.nlm.nih.gov/pubmed/35017580
http://dx.doi.org/10.1038/s41598-021-04540-w
Descripción
Sumario:Downward gazing is often observed when walking requires guidance. This gaze behavior is thought to promote walking stability through anticipatory stepping control. This study is part of an ongoing effort to investigate whether downward gazing also serves to enhance postural control, which can promote walking stability through a feedback/reactive mechanism. Since gaze behavior alone gives no indication as to what information is gathered and the functions it serves, we aimed to investigate the cognitive demands associated with downward gazing, as they are likely to differ between anticipatory and feedback use of visual input. To do so, we used a novel methodology to compromise walking stability in a manner that could not be resolved through modulation of stepping. Then, using interference methodology and neuroimaging, we tested for (1) interference related to dual tasking, and (2) changes in prefrontal activity. The novel methodology resulted in an increase in the time spent looking at the walking surface. Further, while some dual-task interference was observed, indicating that this gaze behavior is cognitively demanding, several gaze parameters pertaining to downward gazing and prefrontal activity correlated. These correlations revealed that a greater tendency to gaze onto the walking surface was associated with lower PFC activity, as is expected when sensory information is used through highly automatic, and useful, neural circuitry. These results, while not conclusive, do suggest that gazing onto the walking surface can be used for purposes other than anticipatory stepping control, bearing important motor-control and clinical implications.