Cargando…

Genome-wide identification and expression profiling analysis of Wnt family genes affecting adipocyte differentiation in cattle

The Wnt family features conserved glycoproteins that play roles in tissue regeneration, animal development and cell proliferation and differentiation. For its functional diversity and importance, this family has been studied in several species, but not in the Bovinae. Herein we identified 19 Wnt gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Cuili, Wang, Shuzhe, Yang, Chaoyun, Hu, Chunli, Sheng, Hui, Xue, Xiaoshu, Hu, Honghong, Lei, Zhaoxiong, Yang, Mengli, Ma, Yun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752766/
https://www.ncbi.nlm.nih.gov/pubmed/35017603
http://dx.doi.org/10.1038/s41598-021-04468-1
Descripción
Sumario:The Wnt family features conserved glycoproteins that play roles in tissue regeneration, animal development and cell proliferation and differentiation. For its functional diversity and importance, this family has been studied in several species, but not in the Bovinae. Herein we identified 19 Wnt genes in cattle, and seven other species of Bovinae, and described their corresponding protein properties. Phylogenetic analysis clustered the 149 Wnt proteins in Bovinae, and 38 Wnt proteins from the human and mouse into 12 major clades. Wnt genes from the same subfamilies shared similar protein motif compositions and exon–intron patterns. Chromosomal distribution and collinearity analysis revealed that they were conservative in cattle and five species of Bovinae. RNA-seq data analysis indicated that Wnt genes exhibited tissue-specific expression in cattle. qPCR analysis revealed a unique expression pattern of each gene during bovine adipocytes differentiation. Finally, the comprehensive analysis indicated that Wnt2B may regulate adipose differentiation by activating FZD5, which is worthy of further study. Our study presents the first genome-wide study of the Wnt gene family in Bovinae, and lays the foundation for further functional characterization of this family in bovine adipocytes differentiation.