Cargando…

Automated prediction of the clinical impact of structural copy number variations

Copy number variants (CNVs) play an important role in many biological processes, including the development of genetic diseases, making them attractive targets for genetic analyses. The interpretation of the effect of these structural variants is a challenging problem due to highly variable numbers o...

Descripción completa

Detalles Bibliográficos
Autores principales: Gažiová, M., Sládeček, T., Pös, O., Števko, M., Krampl, W., Pös, Z., Hekel, R., Hlavačka, M., Kucharík, M., Radvánszky, J., Budiš, J., Szemes, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752772/
https://www.ncbi.nlm.nih.gov/pubmed/35017614
http://dx.doi.org/10.1038/s41598-021-04505-z
_version_ 1784631946559619072
author Gažiová, M.
Sládeček, T.
Pös, O.
Števko, M.
Krampl, W.
Pös, Z.
Hekel, R.
Hlavačka, M.
Kucharík, M.
Radvánszky, J.
Budiš, J.
Szemes, T.
author_facet Gažiová, M.
Sládeček, T.
Pös, O.
Števko, M.
Krampl, W.
Pös, Z.
Hekel, R.
Hlavačka, M.
Kucharík, M.
Radvánszky, J.
Budiš, J.
Szemes, T.
author_sort Gažiová, M.
collection PubMed
description Copy number variants (CNVs) play an important role in many biological processes, including the development of genetic diseases, making them attractive targets for genetic analyses. The interpretation of the effect of these structural variants is a challenging problem due to highly variable numbers of gene, regulatory, or other genomic elements affected by the CNV. This led to the demand for the interpretation tools that would relieve researchers, laboratory diagnosticians, genetic counselors, and clinical geneticists from the laborious process of annotation and classification of CNVs. We designed and validated a prediction method (ISV; Interpretation of Structural Variants) that is based on boosted trees which takes into account annotations of CNVs from several publicly available databases. The presented approach achieved more than 98% prediction accuracy on both copy number loss and copy number gain variants while also allowing CNVs being assigned “uncertain” significance in predictions. We believe that ISV’s prediction capability and explainability have a great potential to guide users to more precise interpretations and classifications of CNVs.
format Online
Article
Text
id pubmed-8752772
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87527722022-01-13 Automated prediction of the clinical impact of structural copy number variations Gažiová, M. Sládeček, T. Pös, O. Števko, M. Krampl, W. Pös, Z. Hekel, R. Hlavačka, M. Kucharík, M. Radvánszky, J. Budiš, J. Szemes, T. Sci Rep Article Copy number variants (CNVs) play an important role in many biological processes, including the development of genetic diseases, making them attractive targets for genetic analyses. The interpretation of the effect of these structural variants is a challenging problem due to highly variable numbers of gene, regulatory, or other genomic elements affected by the CNV. This led to the demand for the interpretation tools that would relieve researchers, laboratory diagnosticians, genetic counselors, and clinical geneticists from the laborious process of annotation and classification of CNVs. We designed and validated a prediction method (ISV; Interpretation of Structural Variants) that is based on boosted trees which takes into account annotations of CNVs from several publicly available databases. The presented approach achieved more than 98% prediction accuracy on both copy number loss and copy number gain variants while also allowing CNVs being assigned “uncertain” significance in predictions. We believe that ISV’s prediction capability and explainability have a great potential to guide users to more precise interpretations and classifications of CNVs. Nature Publishing Group UK 2022-01-11 /pmc/articles/PMC8752772/ /pubmed/35017614 http://dx.doi.org/10.1038/s41598-021-04505-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gažiová, M.
Sládeček, T.
Pös, O.
Števko, M.
Krampl, W.
Pös, Z.
Hekel, R.
Hlavačka, M.
Kucharík, M.
Radvánszky, J.
Budiš, J.
Szemes, T.
Automated prediction of the clinical impact of structural copy number variations
title Automated prediction of the clinical impact of structural copy number variations
title_full Automated prediction of the clinical impact of structural copy number variations
title_fullStr Automated prediction of the clinical impact of structural copy number variations
title_full_unstemmed Automated prediction of the clinical impact of structural copy number variations
title_short Automated prediction of the clinical impact of structural copy number variations
title_sort automated prediction of the clinical impact of structural copy number variations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752772/
https://www.ncbi.nlm.nih.gov/pubmed/35017614
http://dx.doi.org/10.1038/s41598-021-04505-z
work_keys_str_mv AT gaziovam automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT sladecekt automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT poso automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT stevkom automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT kramplw automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT posz automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT hekelr automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT hlavackam automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT kucharikm automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT radvanszkyj automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT budisj automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations
AT szemest automatedpredictionoftheclinicalimpactofstructuralcopynumbervariations