Cargando…
Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells
Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular compositions and study molecular states in complex cellular environment as the lifetime readings are not biased by fluorophore concentration or excitation power. However, the current methods to generate FLIM ima...
Autores principales: | Chen, Yuan-I, Chang, Yin-Jui, Liao, Shih-Chu, Nguyen, Trung Duc, Yang, Jianchen, Kuo, Yu-An, Hong, Soonwoo, Liu, Yen-Liang, Rylander, H. Grady, Santacruz, Samantha R., Yankeelov, Thomas E., Yeh, Hsin-Chih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752789/ https://www.ncbi.nlm.nih.gov/pubmed/35017629 http://dx.doi.org/10.1038/s42003-021-02938-w |
Ejemplares similares
-
Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics
por: Kim, Mirae, et al.
Publicado: (2021) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing
por: Li, Xingjian, et al.
Publicado: (2022) -
Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification
por: Wang, Desheng, et al.
Publicado: (2023) -
Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging
por: Wang, Quan, et al.
Publicado: (2022)