Cargando…

Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network

Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar perfor...

Descripción completa

Detalles Bibliográficos
Autores principales: Schioppo, M., Kronjäger, J., Silva, A., Ilieva, R., Paterson, J. W., Baynham, C. F. A., Bowden, W., Hill, I. R., Hobson, R., Vianello, A., Dovale-Álvarez, M., Williams, R. A., Marra, G., Margolis, H. S., Amy-Klein, A., Lopez, O., Cantin, E., Álvarez-Martínez, H., Le Targat, R., Pottie, P. E., Quintin, N., Legero, T., Häfner, S., Sterr, U., Schwarz, R., Dörscher, S., Lisdat, C., Koke, S., Kuhl, A., Waterholter, T., Benkler, E., Grosche, G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752831/
https://www.ncbi.nlm.nih.gov/pubmed/35017500
http://dx.doi.org/10.1038/s41467-021-27884-3
_version_ 1784631959304011776
author Schioppo, M.
Kronjäger, J.
Silva, A.
Ilieva, R.
Paterson, J. W.
Baynham, C. F. A.
Bowden, W.
Hill, I. R.
Hobson, R.
Vianello, A.
Dovale-Álvarez, M.
Williams, R. A.
Marra, G.
Margolis, H. S.
Amy-Klein, A.
Lopez, O.
Cantin, E.
Álvarez-Martínez, H.
Le Targat, R.
Pottie, P. E.
Quintin, N.
Legero, T.
Häfner, S.
Sterr, U.
Schwarz, R.
Dörscher, S.
Lisdat, C.
Koke, S.
Kuhl, A.
Waterholter, T.
Benkler, E.
Grosche, G.
author_facet Schioppo, M.
Kronjäger, J.
Silva, A.
Ilieva, R.
Paterson, J. W.
Baynham, C. F. A.
Bowden, W.
Hill, I. R.
Hobson, R.
Vianello, A.
Dovale-Álvarez, M.
Williams, R. A.
Marra, G.
Margolis, H. S.
Amy-Klein, A.
Lopez, O.
Cantin, E.
Álvarez-Martínez, H.
Le Targat, R.
Pottie, P. E.
Quintin, N.
Legero, T.
Häfner, S.
Sterr, U.
Schwarz, R.
Dörscher, S.
Lisdat, C.
Koke, S.
Kuhl, A.
Waterholter, T.
Benkler, E.
Grosche, G.
author_sort Schioppo, M.
collection PubMed
description Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10(−17) for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.
format Online
Article
Text
id pubmed-8752831
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87528312022-01-20 Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network Schioppo, M. Kronjäger, J. Silva, A. Ilieva, R. Paterson, J. W. Baynham, C. F. A. Bowden, W. Hill, I. R. Hobson, R. Vianello, A. Dovale-Álvarez, M. Williams, R. A. Marra, G. Margolis, H. S. Amy-Klein, A. Lopez, O. Cantin, E. Álvarez-Martínez, H. Le Targat, R. Pottie, P. E. Quintin, N. Legero, T. Häfner, S. Sterr, U. Schwarz, R. Dörscher, S. Lisdat, C. Koke, S. Kuhl, A. Waterholter, T. Benkler, E. Grosche, G. Nat Commun Article Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10(−17) for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks. Nature Publishing Group UK 2022-01-11 /pmc/articles/PMC8752831/ /pubmed/35017500 http://dx.doi.org/10.1038/s41467-021-27884-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Schioppo, M.
Kronjäger, J.
Silva, A.
Ilieva, R.
Paterson, J. W.
Baynham, C. F. A.
Bowden, W.
Hill, I. R.
Hobson, R.
Vianello, A.
Dovale-Álvarez, M.
Williams, R. A.
Marra, G.
Margolis, H. S.
Amy-Klein, A.
Lopez, O.
Cantin, E.
Álvarez-Martínez, H.
Le Targat, R.
Pottie, P. E.
Quintin, N.
Legero, T.
Häfner, S.
Sterr, U.
Schwarz, R.
Dörscher, S.
Lisdat, C.
Koke, S.
Kuhl, A.
Waterholter, T.
Benkler, E.
Grosche, G.
Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title_full Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title_fullStr Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title_full_unstemmed Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title_short Comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
title_sort comparing ultrastable lasers at 7 × 10(−17) fractional frequency instability through a 2220 km optical fibre network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752831/
https://www.ncbi.nlm.nih.gov/pubmed/35017500
http://dx.doi.org/10.1038/s41467-021-27884-3
work_keys_str_mv AT schioppom comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT kronjagerj comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT silvaa comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT ilievar comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT patersonjw comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT baynhamcfa comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT bowdenw comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT hillir comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT hobsonr comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT vianelloa comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT dovalealvarezm comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT williamsra comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT marrag comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT margolishs comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT amykleina comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT lopezo comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT cantine comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT alvarezmartinezh comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT letargatr comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT pottiepe comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT quintinn comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT legerot comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT hafners comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT sterru comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT schwarzr comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT dorschers comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT lisdatc comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT kokes comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT kuhla comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT waterholtert comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT benklere comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork
AT groscheg comparingultrastablelasersat71017fractionalfrequencyinstabilitythrougha2220kmopticalfibrenetwork