Cargando…
Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells
Tropism of neural stem cells (NSCs) to hypoxic tumor areas provides an opportunity for the drug delivery. Here, we demonstrate that NSCs effectively transport antisense oligonucleotides (ASOs) targeting oncogenic and tolerogenic signal transducer and activator of transcription 3 (STAT3) protein into...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752899/ https://www.ncbi.nlm.nih.gov/pubmed/35036069 http://dx.doi.org/10.1016/j.omtn.2021.12.029 |
_version_ | 1784631973532139520 |
---|---|
author | Adamus, Tomasz Hung, Chia-Yang Yu, Chunsong Kang, Elaine Hammad, Mohamed Flores, Linda Nechaev, Sergey Zhang, Qifang Gonzaga, Joanna Marie Muthaiyah, Kokilah Swiderski, Piotr Aboody, Karen S. Kortylewski, Marcin |
author_facet | Adamus, Tomasz Hung, Chia-Yang Yu, Chunsong Kang, Elaine Hammad, Mohamed Flores, Linda Nechaev, Sergey Zhang, Qifang Gonzaga, Joanna Marie Muthaiyah, Kokilah Swiderski, Piotr Aboody, Karen S. Kortylewski, Marcin |
author_sort | Adamus, Tomasz |
collection | PubMed |
description | Tropism of neural stem cells (NSCs) to hypoxic tumor areas provides an opportunity for the drug delivery. Here, we demonstrate that NSCs effectively transport antisense oligonucleotides (ASOs) targeting oncogenic and tolerogenic signal transducer and activator of transcription 3 (STAT3) protein into glioma microenvironment. To enable spontaneous, scavenger receptor-mediated endocytosis by NSCs, we used previously described CpG-STAT3ASO conjugates. Following uptake and endosomal escape, CpG-STAT3ASO colocalized with CD63(+) vesicles and later with CD63(+)CD81(+) exosomes. Over 3 days, NSCs secreted exosomes loaded up to 80% with CpG-STAT3ASO. Compared to native NSC exosomes, the CpG-STAT3ASO-loaded exosomes potently stimulated immune activity of human dendritic cells or mouse macrophages, inducing nuclear factor κB (NF-κB) signaling and interleukin-12 (IL-12) production. Using orthotopic GL261 tumors, we confirmed that NSC-mediated delivery improved oligonucleotide transfer from a distant injection site into the glioma microenvironment versus naked oligonucleotides. Correspondingly, the NSC-delivered CpG-STAT3ASO enhanced activation of glioma-associated microglia. Finally, we demonstrated that NSC-mediated CpG-STAT3ASO delivery resulted in enhanced antitumor effects against GL261 glioma in mice. Peritumoral injections of 5 × 10(5) NSCs loaded ex vivo with CpG-STAT3ASO inhibited subcutaneous tumor growth more effectively than the equivalent amount of oligonucleotide alone. Based on these results, we anticipate that NSCs and NSC-derived exosomes will provide a clinically relevant strategy to improve delivery and safety of oligonucleotide therapeutics for glioma treatment. |
format | Online Article Text |
id | pubmed-8752899 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-87528992022-01-14 Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells Adamus, Tomasz Hung, Chia-Yang Yu, Chunsong Kang, Elaine Hammad, Mohamed Flores, Linda Nechaev, Sergey Zhang, Qifang Gonzaga, Joanna Marie Muthaiyah, Kokilah Swiderski, Piotr Aboody, Karen S. Kortylewski, Marcin Mol Ther Nucleic Acids Original Article Tropism of neural stem cells (NSCs) to hypoxic tumor areas provides an opportunity for the drug delivery. Here, we demonstrate that NSCs effectively transport antisense oligonucleotides (ASOs) targeting oncogenic and tolerogenic signal transducer and activator of transcription 3 (STAT3) protein into glioma microenvironment. To enable spontaneous, scavenger receptor-mediated endocytosis by NSCs, we used previously described CpG-STAT3ASO conjugates. Following uptake and endosomal escape, CpG-STAT3ASO colocalized with CD63(+) vesicles and later with CD63(+)CD81(+) exosomes. Over 3 days, NSCs secreted exosomes loaded up to 80% with CpG-STAT3ASO. Compared to native NSC exosomes, the CpG-STAT3ASO-loaded exosomes potently stimulated immune activity of human dendritic cells or mouse macrophages, inducing nuclear factor κB (NF-κB) signaling and interleukin-12 (IL-12) production. Using orthotopic GL261 tumors, we confirmed that NSC-mediated delivery improved oligonucleotide transfer from a distant injection site into the glioma microenvironment versus naked oligonucleotides. Correspondingly, the NSC-delivered CpG-STAT3ASO enhanced activation of glioma-associated microglia. Finally, we demonstrated that NSC-mediated CpG-STAT3ASO delivery resulted in enhanced antitumor effects against GL261 glioma in mice. Peritumoral injections of 5 × 10(5) NSCs loaded ex vivo with CpG-STAT3ASO inhibited subcutaneous tumor growth more effectively than the equivalent amount of oligonucleotide alone. Based on these results, we anticipate that NSCs and NSC-derived exosomes will provide a clinically relevant strategy to improve delivery and safety of oligonucleotide therapeutics for glioma treatment. American Society of Gene & Cell Therapy 2021-12-21 /pmc/articles/PMC8752899/ /pubmed/35036069 http://dx.doi.org/10.1016/j.omtn.2021.12.029 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Adamus, Tomasz Hung, Chia-Yang Yu, Chunsong Kang, Elaine Hammad, Mohamed Flores, Linda Nechaev, Sergey Zhang, Qifang Gonzaga, Joanna Marie Muthaiyah, Kokilah Swiderski, Piotr Aboody, Karen S. Kortylewski, Marcin Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title | Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title_full | Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title_fullStr | Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title_full_unstemmed | Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title_short | Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
title_sort | glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752899/ https://www.ncbi.nlm.nih.gov/pubmed/35036069 http://dx.doi.org/10.1016/j.omtn.2021.12.029 |
work_keys_str_mv | AT adamustomasz gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT hungchiayang gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT yuchunsong gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT kangelaine gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT hammadmohamed gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT floreslinda gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT nechaevsergey gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT zhangqifang gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT gonzagajoannamarie gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT muthaiyahkokilah gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT swiderskipiotr gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT aboodykarens gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells AT kortylewskimarcin gliomatargeteddeliveryofexosomeencapsulatedantisenseoligonucleotidesusingneuralstemcells |