Cargando…
Statistical models and computational tools for predicting complex traits and diseases
Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions acr...
Autor principal: | Chung, Wonil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752975/ https://www.ncbi.nlm.nih.gov/pubmed/35012283 http://dx.doi.org/10.5808/gi.21053 |
Ejemplares similares
-
Statistical methods to detect pleiotropy in human complex traits
por: Hackinger, Sophie, et al.
Publicado: (2017) -
Complex models and computational methods in statistics
por: Grigoletto, Matteo, et al.
Publicado: (2013) -
JAG: A Computational Tool to Evaluate the Role of Gene-Sets in Complex Traits
por: Lips, Esther S., et al.
Publicado: (2015) -
Computational Methods for the Discovery of Metabolic Markers of Complex Traits
por: Lee, Michael Y., et al.
Publicado: (2019) -
Improved genetic prediction of complex traits from individual-level data or summary statistics
por: Zhang, Qianqian, et al.
Publicado: (2021)