Cargando…

Utility of white matter disease and atrophy on routinely acquired brain imaging for prediction of long-term delirium risk: population-based cohort study

BACKGROUND: brain imaging done as part of standard care may have clinical utility beyond its immediate indication. Using delirium as an exemplar, we determined the predictive value of baseline brain imaging variables [white matter changes (WMC) and atrophy] for delirium risk on long-term follow-up a...

Descripción completa

Detalles Bibliográficos
Autores principales: Pendlebury, Sarah T, Thomson, Ross J, Welch, Sarah J V, Kuker, Wilhelm, Rothwell, Peter M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753040/
https://www.ncbi.nlm.nih.gov/pubmed/34793588
http://dx.doi.org/10.1093/ageing/afab200
Descripción
Sumario:BACKGROUND: brain imaging done as part of standard care may have clinical utility beyond its immediate indication. Using delirium as an exemplar, we determined the predictive value of baseline brain imaging variables [white matter changes (WMC) and atrophy] for delirium risk on long-term follow-up after transient ischemic attack (TIA)/stroke in a population-based cohort study. METHODS: surviving TIA/stroke participants in the Oxford Vascular Study (OXVASC) were assessed prospectively for delirium during all hospitalisations over 6 months (2013–14). Using logistic regression, independent associations were determined between baseline OXVASC computed tomography or magnetic resonance brain imaging measures of WMC and cerebral atrophy (none/mild versus moderate/severe) and delirium adjusted for age, sex, baseline stroke severity, depression, illness severity and pre-admission cognition. RESULTS: among 1,565 TIA/stroke survivors with 194 hospital admissions (158 patients, mean/standard deviation age at admission = 79.2/11.5 years), delirium occurred in 59 (37%). WMC and atrophy on baseline imaging were associated with delirium [odds ratio (OR) = 3.41, 1.21–5.85, P = 0.001 and OR = 2.50, 1.23–5.08, P = 0.01 (unadjusted) and OR = 2.67, 1.21–5.85, P = 0.02 and OR = 2.18, 1.00–4.73, P = 0.05 (adjusted age and sex)]. Associations were strengthened when analyses were restricted to patients hospitalised within 5 years of baseline brain imaging [OR = 6.04, 2.39–15.24, P < 0.0001 and OR = 4.64, 1.46–14.82, P = 0.009 (unadjusted)] but only WMC remained significant after adjustment for all covariates including pre-admission cognition (OR = 4.83, 1.29–18.13, P = 0.02 for Mini-Mental State Examination and OR = 5.15, 1.26–21.09, P = 0.02 for Montreal Cognitive Assessment). CONCLUSIONS: WMC and atrophy on brain imaging done up to 5 years earlier predicted delirium and may have clinical utility in risk stratification. Associations with WMC but not atrophy were independent of pre-admission cognitive impairment.