Cargando…
Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation
Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753151/ https://www.ncbi.nlm.nih.gov/pubmed/35242347 http://dx.doi.org/10.1098/rsos.211464 |
_version_ | 1784632033143685120 |
---|---|
author | Galili, Lee White Zeira, Adi Marom, Gil |
author_facet | Galili, Lee White Zeira, Adi Marom, Gil |
author_sort | Galili, Lee |
collection | PubMed |
description | Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses. Two types of generic IMA devices were considered, based on coronary sinus vein shortening (IMA-CS) to reduce the annulus perimeter and based on shortening of the anterior–posterior diameter (IMA-AP). The disease, its treatments, and the heart function post-repair were modelled by modifying the living heart human model (Dassault Systèmes). A functional MR pathology that represents ischaemic MR was generated and the IMA treatments were simulated in it, followed by heart function simulations with the devices and leakage quantification from blood flow simulations. All treatments were able to reduce leakage, the IMA-AP device achieved better sealing, and there was a correlation between the IMA-CS device length and the reduction in leakage. The results of this study can help in bringing IMA-AP to market, expanding the use of IMA devices, and optimizing future designs of such devices. |
format | Online Article Text |
id | pubmed-8753151 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87531512022-03-02 Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation Galili, Lee White Zeira, Adi Marom, Gil R Soc Open Sci Engineering Mitral valve regurgitation (MR) is a common valvular heart disease where an improper closure leads to leakage from the left ventricle into the left atrium. There is a need for less-invasive treatments such as percutaneous repairs for a large inoperable patient population. The aim of this study is to compare several indirect mitral annuloplasty (IMA) percutaneous repair techniques by finite-element analyses. Two types of generic IMA devices were considered, based on coronary sinus vein shortening (IMA-CS) to reduce the annulus perimeter and based on shortening of the anterior–posterior diameter (IMA-AP). The disease, its treatments, and the heart function post-repair were modelled by modifying the living heart human model (Dassault Systèmes). A functional MR pathology that represents ischaemic MR was generated and the IMA treatments were simulated in it, followed by heart function simulations with the devices and leakage quantification from blood flow simulations. All treatments were able to reduce leakage, the IMA-AP device achieved better sealing, and there was a correlation between the IMA-CS device length and the reduction in leakage. The results of this study can help in bringing IMA-AP to market, expanding the use of IMA devices, and optimizing future designs of such devices. The Royal Society 2022-01-12 /pmc/articles/PMC8753151/ /pubmed/35242347 http://dx.doi.org/10.1098/rsos.211464 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Engineering Galili, Lee White Zeira, Adi Marom, Gil Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title | Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title_full | Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title_fullStr | Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title_full_unstemmed | Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title_short | Numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
title_sort | numerical biomechanics modelling of indirect mitral annuloplasty treatments for functional mitral regurgitation |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753151/ https://www.ncbi.nlm.nih.gov/pubmed/35242347 http://dx.doi.org/10.1098/rsos.211464 |
work_keys_str_mv | AT galililee numericalbiomechanicsmodellingofindirectmitralannuloplastytreatmentsforfunctionalmitralregurgitation AT whitezeiraadi numericalbiomechanicsmodellingofindirectmitralannuloplastytreatmentsforfunctionalmitralregurgitation AT maromgil numericalbiomechanicsmodellingofindirectmitralannuloplastytreatmentsforfunctionalmitralregurgitation |