Cargando…
The generalized Wiener–Hopf equations for the elastic wave motion in angular regions
In this work, we introduce a general method to deduce spectral functional equations in elasticity and thus, the generalized Wiener–Hopf equations (GWHEs), for the wave motion in angular regions filled by arbitrary linear homogeneous media and illuminated by sources localized at infinity. The work ex...
Autores principales: | Daniele, Vito G., Lombardi, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753162/ https://www.ncbi.nlm.nih.gov/pubmed/35153614 http://dx.doi.org/10.1098/rspa.2021.0624 |
Ejemplares similares
-
The generalized Wiener–Hopf equations for wave motion in angular regions: electromagnetic application
por: Daniele, V. G., et al.
Publicado: (2021) -
The Wiener–Hopf technique, its generalizations and applications: constructive and approximate methods
por: Kisil, Anastasia V., et al.
Publicado: (2021) -
Scattering and diffraction by wedges 1: the Wiener-Hopf solution - theory
por: Daniele, Vito G, et al.
Publicado: (2020) -
The Wiener‐Hopf method in electromagnetics
por: Daniele, Vito G
Publicado: (2014) -
Scattering and diffraction by wedges 2: the Wiener-Hopf solution : advanced applications
por: Daniele, Vito G, et al.
Publicado: (2020)