Cargando…
Conceptualising fairness: three pillars for medical algorithms and health equity
OBJECTIVES: Fairness is a core concept meant to grapple with different forms of discrimination and bias that emerge with advances in Artificial Intelligence (eg, machine learning, ML). Yet, claims to fairness in ML discourses are often vague and contradictory. The response to these issues within the...
Autores principales: | Sikstrom, Laura, Maslej, Marta M, Hui, Katrina, Findlay, Zoe, Buchman, Daniel Z, Hill, Sean L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753410/ https://www.ncbi.nlm.nih.gov/pubmed/35012941 http://dx.doi.org/10.1136/bmjhci-2021-100459 |
Ejemplares similares
-
Predictive care: a protocol for a computational ethnographic approach to building fair models of inpatient violence in emergency psychiatry
por: Sikstrom, Laura, et al.
Publicado: (2023) -
Quantification of fairness bias by a Fairness-Equity Model
por: Tam, David Nicoladie
Publicado: (2011) -
Operationalising fairness in medical algorithms
por: Parbhoo, Sonali, et al.
Publicado: (2022) -
Can medical algorithms be fair? Three ethical quandaries and one dilemma
por: Bærøe, Kristine, et al.
Publicado: (2022) -
Algorithmic fairness in computational medicine
por: Xu, Jie, et al.
Publicado: (2022)