Cargando…

Process development options for electronic waste fractionation to achieve maximum material value recovery

Revised legislation and bans on imports of waste electrical and electronic equipment (WEEE) into many Asian countries for treatment are driving the need for more efficient WEEE fractionation in Europe by expanding the capacity of treatment plants and improving the percentage recovery of materials of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruch, Johannes-Robert, Bokelmann, Katrin, Grimes, Sue M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753501/
https://www.ncbi.nlm.nih.gov/pubmed/33588713
http://dx.doi.org/10.1177/0734242X20987895
Descripción
Sumario:Revised legislation and bans on imports of waste electrical and electronic equipment (WEEE) into many Asian countries for treatment are driving the need for more efficient WEEE fractionation in Europe by expanding the capacity of treatment plants and improving the percentage recovery of materials of economic value. Data from a key stakeholder survey and consultation are combined with the results of a detailed literature survey to provide weighted matrix input into multi-criteria decision analysis calculations to carry out the following tasks: (a) assess the relative importance of 12 process options against the 6 industry-derived in-process economic potential criteria, that is, increase in product quality, increase in recycling rate, increase in process capacity, decrease in labour costs, decrease in energy costs and decrease in disposal costs; and (b) rank 25 key technologies that have been selected as being the most likely to benefit the efficient sorting of WEEE. The results indicate that the first stage in the development of any total system to achieve maximum economic recovery of materials from WEEE has to be the selection and application of appropriate fractionation process technologies to concentrate valuable components such as critical metals into the smallest possible fractions to achieve their recovery while minimising the disposal costs of low-value products. The stakeholder-based study has determined the priority for viable technical process developments for efficient WEEE fractionation and highlighted the economic and technical improvements that have to be made in the treatment of WEEE.