Cargando…
A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis
BACKGROUND: Drug resistant Mycobacterium tuberculosis is complicating the effective treatment and control of tuberculosis disease (TB). With the adoption of whole genome sequencing as a diagnostic tool, machine learning approaches are being employed to predict M. tuberculosis resistance and identify...
Autores principales: | Deelder, Wouter, Napier, Gary, Campino, Susana, Palla, Luigi, Phelan, Jody, Clark, Taane G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753810/ https://www.ncbi.nlm.nih.gov/pubmed/35016609 http://dx.doi.org/10.1186/s12864-022-08291-4 |
Ejemplares similares
-
Large-scale genomic analysis of Mycobacterium tuberculosis reveals extent of target and compensatory mutations linked to multi-drug resistant tuberculosis
por: Napier, Gary, et al.
Publicado: (2023) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023) -
Geographical classification of malaria parasites through applying machine learning to whole genome sequence data
por: Deelder, Wouter, et al.
Publicado: (2022) -
Mixed infections in genotypic drug-resistant Mycobacterium tuberculosis
por: Wang, Linfeng, et al.
Publicado: (2023)