Cargando…
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method
BACKGROUND: Researchers have attempted to apply deep learning methods of artificial intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in microscopic images. RESULTS: A Resnet101-9 ensemble model was developed for classifying ALL in microscopic images. The proposed...
Autores principales: | Chen, Yao-Mei, Chou, Fu-I, Ho, Wen-Hsien, Tsai, Jinn-Tsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753813/ https://www.ncbi.nlm.nih.gov/pubmed/35016610 http://dx.doi.org/10.1186/s12859-022-04558-5 |
Ejemplares similares
-
Automatic identifying and counting blood cells in smear images by using single shot detector and Taguchi method
por: Chen, Yao-Mei, et al.
Publicado: (2022) -
Classifying chest CT images as COVID-19 positive/negative using a convolutional neural network ensemble model and uniform experimental design method
por: Chen, Yao-Mei, et al.
Publicado: (2021) -
Gaussian Blurring Technique for Detecting and Classifying Acute Lymphoblastic Leukemia Cancer Cells from Microscopic Biopsy Images
por: Devi, Tulasi Gayatri, et al.
Publicado: (2023) -
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
por: Amin, Morteza Moradi, et al.
Publicado: (2015) -
ROENet: A ResNet-Based Output Ensemble for Malaria Parasite Classification
por: Zhu, Ziquan, et al.
Publicado: (2022)