Cargando…

Ipsilesional volume loss of basal ganglia and thalamus is associated with poor hand function after ischemic perinatal stroke

BACKGROUND: Perinatal stroke (PS) is the leading cause of hemiparetic cerebral palsy (CP). Involvement of the corticospinal tract on neonatal magnetic resonance imaging (MRI) is predictive of motor outcome in patients with hemiparetic CP. However, early MRI is not available in patients with delayed...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilves, Nigul, Lõo, Silva, Ilves, Norman, Laugesaar, Rael, Loorits, Dagmar, Kool, Pille, Talvik, Tiina, Ilves, Pilvi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753896/
https://www.ncbi.nlm.nih.gov/pubmed/35022000
http://dx.doi.org/10.1186/s12883-022-02550-3
Descripción
Sumario:BACKGROUND: Perinatal stroke (PS) is the leading cause of hemiparetic cerebral palsy (CP). Involvement of the corticospinal tract on neonatal magnetic resonance imaging (MRI) is predictive of motor outcome in patients with hemiparetic CP. However, early MRI is not available in patients with delayed presentation of PS and prediction of hemiparesis severity remains a challenge. AIMS: To evaluate the volumes of the basal ganglia, amygdala, thalamus, and hippocampus following perinatal ischemic stroke in relation to hand motor function in children with a history of PS and to compare the volumes of subcortical structures in children with PS and in healthy controls. METHODS: Term born PS children with arterial ischemic stroke (AIS) (n = 16) and with periventricular venous infarction (PVI) (n = 18) were recruited from the Estonian Pediatric Stroke Database. MRI was accuired during childhood (4-18 years) and the volumes of the basal ganglia, thalamus, amygdala and hippocampus were calculated. The results of stroke patients were compared to the results of 42 age- and sex-matched healthy controls. Affected hand function was evaluated by Assisting Hand Assessment (AHA) and classified by the Manual Ability Classification System (MACS). RESULTS: Compared to the control group, children with AIS had smaller volumes of the ipsi- and contralesional thalami, ipsilesional globus pallidus, nucleus accumbens and hippocampus (p < 0.005). Affected hand function in children with AIS was correlated with smaller ipsilesional thalamus, putamen, globus pallidus, hippocampus, amygdala and contralesional amygdala (r > 0.5; p < 0.05) and larger volume of the contralesional putamen and hippocampus (r < − 0.5; p < 0.05). In children with PVI, size of the ipsilesional caudate nucleus, globus pallidus, thalamus (p ≤ 0.001) and hippocampus (p < 0.03) was smaller compared to controls. Smaller volume of the ipsi- and contralesional thalami and ipsilesional caudate nucleus was correlated with affected hand function (r > 0.55; p < 0.05) in children with PVI. CONCLUSIONS: Smaller volume of ipsilesional thalamus was associated with poor affected hand function regardless of the perinatal stroke subtype. The pattern of correlation between hand function and volume differences in the other subcortical structures varied between children with PVI and AIS. Evaluation of subcortical structures is important in predicting motor outcome following perinatal stroke.