Cargando…
MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols
BACKGROUND: Epithelial ovarian cancer (EOC) is the most malignant gynecological tumor in women. This study aimed to construct and compare radiomics-clinical nomograms based on MR images in EOC prognosis prediction. METHODS: A total of 186 patients with pathologically proven EOC were enrolled and ran...
Autores principales: | Wang, Tianping, Wang, Haijie, Wang, Yida, Liu, Xuefen, Ling, Lei, Zhang, Guofu, Yang, Guang, Zhang, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753904/ https://www.ncbi.nlm.nih.gov/pubmed/35022079 http://dx.doi.org/10.1186/s13048-021-00941-7 |
Ejemplares similares
-
Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging
por: Wang, Yida, et al.
Publicado: (2023) -
Two-dimensional and three-dimensional T2 weighted imaging-based radiomic signatures for the preoperative discrimination of ovarian borderline tumors and malignant tumors
por: Liu, Xuefen, et al.
Publicado: (2022) -
A computerized diagnostic model for automatically evaluating placenta accrete spectrum disorders based on the combined MR radiomics-clinical signatures
por: Zhu, Hao, et al.
Publicado: (2022) -
Author Correction: A computerized diagnostic model for automatically evaluating placenta accrete spectrum disorders based on the combined MR radiomics-clinical signatures
por: Zhu, Hao, et al.
Publicado: (2022) -
Radiomics Nomogram Improves the Prediction of Epilepsy in Patients With Gliomas
por: Jie, Bai, et al.
Publicado: (2022)