Cargando…
Self-relabeling for noise-tolerant retina vessel segmentation through label reliability estimation
BACKGROUND: Retinal vessel segmentation benefits significantly from deep learning. Its performance relies on sufficient training images with accurate ground-truth segmentation, which are usually manually annotated in the form of binary pixel-wise label maps. Manually annotated ground-truth label map...
Autores principales: | Li, Jiacheng, Li, Ruirui, Han, Ruize, Wang, Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753937/ https://www.ncbi.nlm.nih.gov/pubmed/35022020 http://dx.doi.org/10.1186/s12880-021-00732-y |
Ejemplares similares
-
Relabeling the Medications We Call Antidepressants
por: Antonuccio, David, et al.
Publicado: (2012) -
Unpacking the effects of adverse regulatory events: Evidence from pharmaceutical relabeling
por: Higgins, Matthew J., et al.
Publicado: (2021) -
Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors
por: Smith, Cheryl L., et al.
Publicado: (2021) -
Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method
por: Chen, Guannan, et al.
Publicado: (2017) -
Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction
por: Marciniak, Tomasz, et al.
Publicado: (2023)