Cargando…
Resource management framework using simulation modeling and multi-objective optimization: a case study of a front-end department of a public hospital in Thailand
BACKGROUND: The overcrowded patients, which cause the long waiting time in public hospitals, become significant problems that affect patient satisfaction toward the hospital. Particularly, the bottleneck usually happens at front-end departments (e.g., the triage and medical record department) as eve...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753944/ https://www.ncbi.nlm.nih.gov/pubmed/35022015 http://dx.doi.org/10.1186/s12911-022-01750-8 |
Sumario: | BACKGROUND: The overcrowded patients, which cause the long waiting time in public hospitals, become significant problems that affect patient satisfaction toward the hospital. Particularly, the bottleneck usually happens at front-end departments (e.g., the triage and medical record department) as every patient is firstly required to visit these departments. The problem is mainly caused by ineffective resource management. In order to support decision making in the resource management at front-end departments, this paper proposes a framework using simulation and multi-objective optimization techniques considering both operating cost and patient satisfaction. METHODS: To develop the framework, first, the timestamp of patient arrival time at each station was collected at the triage and medical record department of Thammasat University Hospital in Thailand. A patient satisfaction assessment method was used to convert the time spend into a satisfaction score. Then, the simulation model was built from the current situation of the hospital and was applied scenario analyses for the model improvement. The models were verified and validated. The weighted max–min for fuzzy multi-objective optimization was done by minimizing the operating cost and maximizing the patient satisfaction score. The operating costs and patient satisfaction scores from various scenarios were statistically compared. Finally, a decision-making guideline was proposed to support suitable resource management at the front-end departments of the hospital. RESULT: The three scenarios of the simulation model were built (i.e., a real situation, a one-stop service, and partially shared resources) and ensured to be verified and valid. The optimized results were compared and grouped into three situations which are (1) remain the same satisfaction score but decrease the cost (cost decreased by 2.8%) (2) remain the same satisfaction score but increase the cost (cost increased up to 80%) and (3) decrease the satisfaction score and decrease the cost (satisfaction decreased up to 82% and cost decreased up to 59%). According to the guideline, the situations 1 and 3 were recommended to use in the improvement and the situation 2 was rejected. CONCLUSION: This research demonstrates the resource management framework for the front-end department of the hospital. The experimental results imply that the framework can be used to support the decision making in resource management and used to reduce the risk of applying a non-improvement model in a real situation. |
---|