Cargando…

MicroRNA-195-5p inhibits the progression of hemangioma via targeting SKI

Hemangioma (HA), which is characterized by aberrant endothelial cell proliferation in blood vessels, is a common tumor during infancy. MicroRNAs (miRNAs/miRs) collectively participate in the development of HA; however, the potential roles of miR-195-5p in HA are not completely understood. The aim of...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bin, Huang, Zhi, Yang, Hua, Zhao, Xuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8753966/
https://www.ncbi.nlm.nih.gov/pubmed/35069846
http://dx.doi.org/10.3892/etm.2021.11088
Descripción
Sumario:Hemangioma (HA), which is characterized by aberrant endothelial cell proliferation in blood vessels, is a common tumor during infancy. MicroRNAs (miRNAs/miRs) collectively participate in the development of HA; however, the potential roles of miR-195-5p in HA are not completely understood. The aim of the present study was to investigate the roles of miR-195-5p in HA. In the present study, miR-195-5p was found to be downregulated in HA cells, such as the XPTS-1 human infantile hemangioma-derived endothelial cell line and the EOMA hemangioendothelioma cell line. Overexpression of miR-195-5p was shown to suppress HA cell viability, colony formation and proliferation, and induced HA cell apoptosis. Furthermore, miR-195-5p downregulated Bcl-2 expression and upregulated Bax and Bcl-2 expression levels. V-ski sarcoma viral oncogene homolog (SKI) was identified as a target of miR-195-5p. Co-transfection of miR-195-5p mimics and SKI 3'-untranslated region wild-type decreased HA cell luciferase activity. SKI overexpression alleviated the miR-195-5p-induced decrease in HA cell proliferation and increased HA cell apoptosis. In addition, the regulatory role of miR-195-5p on the expression of Bcl-2, Bax and poly(ADP-ribose) polymerase was reversed by SKI. Collectively, the results of the present study demonstrated that miR-195-5p suppressed HA progression and its effects were mediated via SKI. Therefore, the miR-195-5p/SKI axis may represent a novel therapeutic target for HA.