Cargando…
Interpretable deep learning approach for oral cancer classification using guided attention inference network
SIGNIFICANCE: Convolutional neural networks (CNNs) show the potential for automated classification of different cancer lesions. However, their lack of interpretability and explainability makes CNNs less than understandable. Furthermore, CNNs may incorrectly concentrate on other areas surrounding the...
Autores principales: | Figueroa, Kevin Chew, Song, Bofan, Sunny, Sumsum, Li, Shaobai, Gurushanth, Keerthi, Mendonca, Pramila, Mukhia, Nirza, Patrick, Sanjana, Gurudath, Shubha, Raghavan, Subhashini, Imchen, Tsusennaro, Leivon, Shirley T., Kolur, Trupti, Shetty, Vivek, Bushan, Vidya, Ramesh, Rohan, Pillai, Vijay, Wilder-Smith, Petra, Sigamani, Alben, Suresh, Amritha, Kuriakose, Moni Abraham, Birur, Praveen, Liang, Rongguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754153/ https://www.ncbi.nlm.nih.gov/pubmed/35023333 http://dx.doi.org/10.1117/1.JBO.27.1.015001 |
Ejemplares similares
-
Classification of imbalanced oral cancer image data from high-risk population
por: Song, Bofan, et al.
Publicado: (2021) -
Mobile-based oral cancer classification for point-of-care screening
por: Song, Bofan, et al.
Publicado: (2021) -
Exploring uncertainty measures in convolutional neural network for semantic segmentation of oral cancer images
por: Song, Bofan, et al.
Publicado: (2022) -
Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert Knowledge Embedding via Attention Map
por: Song, Bofan, et al.
Publicado: (2023) -
Inter-observer agreement among specialists in the diagnosis of Oral Potentially Malignant Disorders and Oral Cancer using Store-and-Forward technology
por: Gurushanth, Keerthi, et al.
Publicado: (2023)