Cargando…
LYRUS: a machine learning model for predicting the pathogenicity of missense variants
SUMMARY: Single amino acid variations (SAVs) are a primary contributor to variations in the human genome. Identifying pathogenic SAVs can provide insights to the genetic architecture of complex diseases. Most approaches for predicting the functional effects or pathogenicity of SAVs rely on either se...
Autores principales: | Lai, Jiaying, Yang, Jordan, Gamsiz Uzun, Ece D, Rubenstein, Brenda M, Sarkar, Indra Neil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754197/ https://www.ncbi.nlm.nih.gov/pubmed/35036922 http://dx.doi.org/10.1093/bioadv/vbab045 |
Ejemplares similares
-
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants
por: Larrea-Sebal, Asier, et al.
Publicado: (2021) -
MVP predicts the pathogenicity of missense variants by deep learning
por: Qi, Hongjian, et al.
Publicado: (2021) -
Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants
por: Kang, Moonjong, et al.
Publicado: (2023) -
Rhapsody: predicting the pathogenicity of human missense variants
por: Ponzoni, Luca, et al.
Publicado: (2020) -
Improved pathogenicity prediction for rare human missense variants
por: Wu, Yingzhou, et al.
Publicado: (2021)