Cargando…

A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence...

Descripción completa

Detalles Bibliográficos
Autores principales: Quidwai, Tooba, Wang, Jiaolong, Hall, Emma A, Petriman, Narcis A, Leng, Weihua, Kiesel, Petra, Wells, Jonathan N, Murphy, Laura C, Keighren, Margaret A, Marsh, Joseph A, Lorentzen, Esben, Pigino, Gaia, Mill, Pleasantine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/
https://www.ncbi.nlm.nih.gov/pubmed/34734804
http://dx.doi.org/10.7554/eLife.69786
_version_ 1784632269765345280
author Quidwai, Tooba
Wang, Jiaolong
Hall, Emma A
Petriman, Narcis A
Leng, Weihua
Kiesel, Petra
Wells, Jonathan N
Murphy, Laura C
Keighren, Margaret A
Marsh, Joseph A
Lorentzen, Esben
Pigino, Gaia
Mill, Pleasantine
author_facet Quidwai, Tooba
Wang, Jiaolong
Hall, Emma A
Petriman, Narcis A
Leng, Weihua
Kiesel, Petra
Wells, Jonathan N
Murphy, Laura C
Keighren, Margaret A
Marsh, Joseph A
Lorentzen, Esben
Pigino, Gaia
Mill, Pleasantine
author_sort Quidwai, Tooba
collection PubMed
description Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
format Online
Article
Text
id pubmed-8754431
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-87544312022-01-13 A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia Quidwai, Tooba Wang, Jiaolong Hall, Emma A Petriman, Narcis A Leng, Weihua Kiesel, Petra Wells, Jonathan N Murphy, Laura C Keighren, Margaret A Marsh, Joseph A Lorentzen, Esben Pigino, Gaia Mill, Pleasantine eLife Cell Biology Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. eLife Sciences Publications, Ltd 2021-11-04 /pmc/articles/PMC8754431/ /pubmed/34734804 http://dx.doi.org/10.7554/eLife.69786 Text en © 2021, Quidwai et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Quidwai, Tooba
Wang, Jiaolong
Hall, Emma A
Petriman, Narcis A
Leng, Weihua
Kiesel, Petra
Wells, Jonathan N
Murphy, Laura C
Keighren, Margaret A
Marsh, Joseph A
Lorentzen, Esben
Pigino, Gaia
Mill, Pleasantine
A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title_full A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title_fullStr A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title_full_unstemmed A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title_short A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
title_sort wdr35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/
https://www.ncbi.nlm.nih.gov/pubmed/34734804
http://dx.doi.org/10.7554/eLife.69786
work_keys_str_mv AT quidwaitooba awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT wangjiaolong awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT hallemmaa awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT petrimannarcisa awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT lengweihua awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT kieselpetra awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT wellsjonathann awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT murphylaurac awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT keighrenmargareta awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT marshjosepha awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT lorentzenesben awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT piginogaia awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT millpleasantine awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT quidwaitooba wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT wangjiaolong wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT hallemmaa wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT petrimannarcisa wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT lengweihua wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT kieselpetra wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT wellsjonathann wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT murphylaurac wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT keighrenmargareta wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT marshjosepha wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT lorentzenesben wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT piginogaia wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia
AT millpleasantine wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia