Cargando…
A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/ https://www.ncbi.nlm.nih.gov/pubmed/34734804 http://dx.doi.org/10.7554/eLife.69786 |
_version_ | 1784632269765345280 |
---|---|
author | Quidwai, Tooba Wang, Jiaolong Hall, Emma A Petriman, Narcis A Leng, Weihua Kiesel, Petra Wells, Jonathan N Murphy, Laura C Keighren, Margaret A Marsh, Joseph A Lorentzen, Esben Pigino, Gaia Mill, Pleasantine |
author_facet | Quidwai, Tooba Wang, Jiaolong Hall, Emma A Petriman, Narcis A Leng, Weihua Kiesel, Petra Wells, Jonathan N Murphy, Laura C Keighren, Margaret A Marsh, Joseph A Lorentzen, Esben Pigino, Gaia Mill, Pleasantine |
author_sort | Quidwai, Tooba |
collection | PubMed |
description | Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. |
format | Online Article Text |
id | pubmed-8754431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-87544312022-01-13 A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia Quidwai, Tooba Wang, Jiaolong Hall, Emma A Petriman, Narcis A Leng, Weihua Kiesel, Petra Wells, Jonathan N Murphy, Laura C Keighren, Margaret A Marsh, Joseph A Lorentzen, Esben Pigino, Gaia Mill, Pleasantine eLife Cell Biology Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß′ COPI coatomer subunits and demonstrate an accumulation of ‘coat-less’ vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation. eLife Sciences Publications, Ltd 2021-11-04 /pmc/articles/PMC8754431/ /pubmed/34734804 http://dx.doi.org/10.7554/eLife.69786 Text en © 2021, Quidwai et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Quidwai, Tooba Wang, Jiaolong Hall, Emma A Petriman, Narcis A Leng, Weihua Kiesel, Petra Wells, Jonathan N Murphy, Laura C Keighren, Margaret A Marsh, Joseph A Lorentzen, Esben Pigino, Gaia Mill, Pleasantine A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title_full | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title_fullStr | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title_full_unstemmed | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title_short | A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
title_sort | wdr35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754431/ https://www.ncbi.nlm.nih.gov/pubmed/34734804 http://dx.doi.org/10.7554/eLife.69786 |
work_keys_str_mv | AT quidwaitooba awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT wangjiaolong awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT hallemmaa awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT petrimannarcisa awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT lengweihua awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT kieselpetra awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT wellsjonathann awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT murphylaurac awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT keighrenmargareta awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT marshjosepha awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT lorentzenesben awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT piginogaia awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT millpleasantine awdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT quidwaitooba wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT wangjiaolong wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT hallemmaa wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT petrimannarcisa wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT lengweihua wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT kieselpetra wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT wellsjonathann wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT murphylaurac wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT keighrenmargareta wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT marshjosepha wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT lorentzenesben wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT piginogaia wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia AT millpleasantine wdr35dependentcoatproteincomplextransportsciliarymembranecargovesiclestocilia |