Cargando…
Socioeconomic and environmental factors of poverty in China using geographically weighted random forest regression model
Correlations between socioeconomic factors and poverty in regression models do not reflect actual relationships, especially when data exhibit patterns of spatial heterogeneity. Spatial regression models can estimate the relationships between socioeconomic factors and poverty in defined geographical...
Autores principales: | Luo, Yaowen, Yan, Jianguo, McClure, Stephen C., Li, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754530/ https://www.ncbi.nlm.nih.gov/pubmed/35022975 http://dx.doi.org/10.1007/s11356-021-17513-3 |
Ejemplares similares
-
Distribution of the environmental and socioeconomic risk factors on COVID-19 death rate across continental USA: a spatial nonlinear analysis
por: Luo, Yaowen, et al.
Publicado: (2020) -
Geo-environmental and socioeconomic determinants of poverty in China: an empirical analysis based on stratified poverty theory
por: Zhou, Yang, et al.
Publicado: (2022) -
Socioeconomic and environmental determinants of asthma prevalence: a cross-sectional study at the U.S. County level using geographically weighted random forests
por: Lotfata, Aynaz, et al.
Publicado: (2023) -
Evaluating Geographically Weighted Regression Models for Environmental Chemical Risk Analysis
por: Czarnota, Jenna, et al.
Publicado: (2015) -
A modification to geographically weighted regression
por: Leong, Yin-Yee, et al.
Publicado: (2017)