Cargando…
Efficient Approach towards Detection and Identification of Copy Move and Image Splicing Forgeries Using Mask R-CNN with MobileNet V1
With the technological advancements of the modern era, the easy availability of image editing tools has dramatically minimized the costs, expense, and expertise needed to exploit and perpetuate persuasive visual tampering. With the aid of reputable online platforms such as Facebook, Twitter, and Ins...
Autores principales: | Kadam, Kalyani Dhananjay, Ahirrao, Swati, Kotecha, Ketan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754624/ https://www.ncbi.nlm.nih.gov/pubmed/35035463 http://dx.doi.org/10.1155/2022/6845326 |
Ejemplares similares
-
Real-time face mask position recognition system based on MobileNet model
por: Rahman, Md Hafizur, et al.
Publicado: (2023) -
A Survey of Partition-Based Techniques for Copy-Move Forgery Detection
por: Nathalie Diane, Wandji Nanda, et al.
Publicado: (2014) -
BM-Net: CNN-Based MobileNet-V3 and Bilinear Structure for Breast Cancer Detection in Whole Slide Images
por: Huang, Jin, et al.
Publicado: (2022) -
A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection
por: Kaya, Yasin, et al.
Publicado: (2023) -
Copy-Move Forgery Detection (CMFD) Using Deep Learning for Image and Video Forensics
por: Rodriguez-Ortega, Yohanna, et al.
Publicado: (2021)