Cargando…
Assessing a fossil fuels externality with a new neural networks and image optimisation algorithm: the case of atmospheric pollutants as confounders to COVID-19 lethality
This paper demonstrates how the combustion of fossil fuels for transport purpose might cause health implications. Based on an original case study [i.e. the Hubei province in China, the epicentre of the coronavirus disease-2019 (COVID-19) pandemic], we collected data on atmospheric pollutants (PM(2.5...
Autores principales: | Magazzino, Cosimo, Mele, Marco, Schneider, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755550/ https://www.ncbi.nlm.nih.gov/pubmed/34782027 http://dx.doi.org/10.1017/S095026882100248X |
Ejemplares similares
-
Revisiting the dynamic interactions between economic growth and environmental pollution in Italy: evidence from a gradient descent algorithm
por: Mele, Marco, et al.
Publicado: (2021) -
The relationship between air pollution and COVID-19-related deaths: An application to three French cities
por: Magazzino, Cosimo, et al.
Publicado: (2020) -
Pollution, economic growth, and COVID-19 deaths in India: a machine learning evidence
por: Mele, Marco, et al.
Publicado: (2020) -
A Dynamic Factor and Neural Networks Analysis of the Co-movement of Public Revenues in the EMU
por: Magazzino, Cosimo, et al.
Publicado: (2021) -
A machine learning algorithm to analyse the effects of vaccination on COVID-19 mortality
por: Magazzino, Cosimo, et al.
Publicado: (2022)