Cargando…
A new limited memory method for unconstrained nonlinear least squares
This paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems, called LMLS. Main features of LMLS are a new non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based on the previous good points, and a heurist...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755706/ https://www.ncbi.nlm.nih.gov/pubmed/35069003 http://dx.doi.org/10.1007/s00500-021-06415-8 |
Sumario: | This paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems, called LMLS. Main features of LMLS are a new non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based on the previous good points, and a heuristic estimation for the Jacobian matrix in a subspace with random basis indices. Our numerical results show that LMLS is robust and efficient, especially in comparison with solvers using traditional limited memory and standard quasi-Newton approximations. |
---|