Cargando…
Training calibration-based counterfactual explainers for deep learning models in medical image analysis
The rapid adoption of artificial intelligence methods in healthcare is coupled with the critical need for techniques to rigorously introspect models and thereby ensure that they behave reliably. This has led to the design of explainable AI techniques that uncover the relationships between discernibl...
Autores principales: | Thiagarajan, Jayaraman J., Thopalli, Kowshik, Rajan, Deepta, Turaga, Pavan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755769/ https://www.ncbi.nlm.nih.gov/pubmed/35022467 http://dx.doi.org/10.1038/s41598-021-04529-5 |
Ejemplares similares
-
DDxNet: a deep learning model for automatic interpretation of electronic health records, electrocardiograms and electroencephalograms
por: Thiagarajan, Jayaraman J., et al.
Publicado: (2020) -
Automated Movement Assessment in Stroke Rehabilitation
por: Ahmed, Tamim, et al.
Publicado: (2021) -
Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
por: Dindorf, Carlo, et al.
Publicado: (2023) -
Explainable Deep Learning Models in Medical Image Analysis
por: Singh, Amitojdeep, et al.
Publicado: (2020) -
Counterfactual Online Learning to Rank
por: Zhuang, Shengyao, et al.
Publicado: (2020)