Cargando…

Top-emitting 940-nm thin-film VCSELs transferred onto aluminum heatsinks

Thin-film vertical cavity surface emitting lasers (VCSELs) mounted onto heatsinks open up the way toward low-power consumption and high-power operation, enabling them to be widely used for energy saving high-speed optical data communication and three-dimensional sensor applications. There are two co...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, Sunghyun, Yun, Yeojun, Lee, Minhyung, Kim, Donghwan, Choi, Wonjin, Park, Ji-Yong, Lee, Jaejin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755793/
https://www.ncbi.nlm.nih.gov/pubmed/35022477
http://dx.doi.org/10.1038/s41598-021-04625-6
Descripción
Sumario:Thin-film vertical cavity surface emitting lasers (VCSELs) mounted onto heatsinks open up the way toward low-power consumption and high-power operation, enabling them to be widely used for energy saving high-speed optical data communication and three-dimensional sensor applications. There are two conventional VCSEL polarity structures: p-on-n and n-on-p polarity. The former is more preferably used owing to the reduced series resistance of n-type bottom distributed Bragg reflection (DBR) as well as the lower defect densities of n-type GaAs substrates. In this study, the p-on-n structures of thin-film VCSELs, including an etch stop layer and a highly n-doped GaAs ohmic layer, were epitaxially grown in upright order by using low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The p-on-n structures of thin-film VCSELs were transferred onto an aluminum heatsink via a double-transfer technique, allowing the top-emitting thin-film VCSELs to keep the p-on-n polarity with the removal of the GaAs substrate. The threshold current (I(th)) and voltage (V(th)) of the fabricated top-emitting thin-film VCSELs were 1 mA and 2.8 V, respectively. The optical power was 7.7 mW at a rollover point of 16.1 mA.