Cargando…
An explainable machine learning framework for lung cancer hospital length of stay prediction
This work introduces a predictive Length of Stay (LOS) framework for lung cancer patients using machine learning (ML) models. The framework proposed to deal with imbalanced datasets for classification-based approaches using electronic healthcare records (EHR). We have utilized supervised ML methods...
Autores principales: | Alsinglawi, Belal, Alshari, Osama, Alorjani, Mohammed, Mubin, Omar, Alnajjar, Fady, Novoa, Mauricio, Darwish, Omar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755804/ https://www.ncbi.nlm.nih.gov/pubmed/35022512 http://dx.doi.org/10.1038/s41598-021-04608-7 |
Ejemplares similares
-
Measurement Method for Evaluating the Lockdown Policies during the COVID-19 Pandemic
por: Al Zobbi, Mohammed, et al.
Publicado: (2020) -
COVID-19 Global Risk: Expectation vs. Reality
por: Arsalan, Mudassar, et al.
Publicado: (2020) -
Global and Temporal COVID-19 Risk Evaluation
por: Arsalan, Mudassar, et al.
Publicado: (2020) -
Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients’ Rehabilitation: Systematic Review
por: Mubin, Omar, et al.
Publicado: (2019) -
Technology, Privacy, and User Opinions of COVID-19 Mobile Apps for Contact Tracing: Systematic Search and Content Analysis
por: Elkhodr, Mahmoud, et al.
Publicado: (2021)