Cargando…

Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters

Lithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Mingqiang, Emre, Ahmet E., Kim, Ji-Young, Huang, Yiting, Liu, Li, Cecen, Volkan, Huang, Yudong, Kotov, Nicholas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755825/
https://www.ncbi.nlm.nih.gov/pubmed/35022406
http://dx.doi.org/10.1038/s41467-021-27861-w
_version_ 1784632455092764672
author Wang, Mingqiang
Emre, Ahmet E.
Kim, Ji-Young
Huang, Yiting
Liu, Li
Cecen, Volkan
Huang, Yudong
Kotov, Nicholas A.
author_facet Wang, Mingqiang
Emre, Ahmet E.
Kim, Ji-Young
Huang, Yiting
Liu, Li
Cecen, Volkan
Huang, Yudong
Kotov, Nicholas A.
author_sort Wang, Mingqiang
collection PubMed
description Lithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g(−1), up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies.
format Online
Article
Text
id pubmed-8755825
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-87558252022-01-20 Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters Wang, Mingqiang Emre, Ahmet E. Kim, Ji-Young Huang, Yiting Liu, Li Cecen, Volkan Huang, Yudong Kotov, Nicholas A. Nat Commun Article Lithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g(−1), up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies. Nature Publishing Group UK 2022-01-12 /pmc/articles/PMC8755825/ /pubmed/35022406 http://dx.doi.org/10.1038/s41467-021-27861-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Mingqiang
Emre, Ahmet E.
Kim, Ji-Young
Huang, Yiting
Liu, Li
Cecen, Volkan
Huang, Yudong
Kotov, Nicholas A.
Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title_full Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title_fullStr Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title_full_unstemmed Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title_short Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
title_sort multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755825/
https://www.ncbi.nlm.nih.gov/pubmed/35022406
http://dx.doi.org/10.1038/s41467-021-27861-w
work_keys_str_mv AT wangmingqiang multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT emreahmete multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT kimjiyoung multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT huangyiting multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT liuli multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT cecenvolkan multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT huangyudong multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters
AT kotovnicholasa multifactorialengineeringofbiomimeticmembranesforbatterieswithmultiplehighperformanceparameters